[1]杨向龙,刘阳,杨基明,等.三维薄壁结构与流体相互作用数值模拟[J].深圳大学学报理工版,2008,25(2):111-116.
 YANG Xiang-long,LIU Yang,YANG Ji-ming,et al.Numerical simulation for interaction between 3D thin-walled structure and fluid[J].Journal of Shenzhen University Science and Engineering,2008,25(2):111-116.
点击复制

三维薄壁结构与流体相互作用数值模拟()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第25卷
期数:
2008年2期
页码:
111-116
栏目:
土木建筑工程
出版日期:
2008-04-30

文章信息/Info

Title:
Numerical simulation for interaction between 3D thin-walled structure and fluid
文章编号:
1000-2618(2008)02-0111-06
作者:
杨向龙1刘阳2杨基明3黄中伟13
1)深圳大学土木工程学院,深圳 518060;
2)香港理工大学机械工程系,香港;
3)中国科学技术大学工程科学学院,合肥 230027
Author(s):
YANG Xiang-long1LIU Yang2YANG Ji-ming3and HUANG Zhong-wei13
1)College of Civil Engineering Shenzhen University,Shenzhen 518060,P.R.China
2)Department of Mechanical Engineering,The Hong Kong Polytechnic University,Hong Kong,P.R.China
3)Department of Modern Mechanics,University of Science and Technology of China,Hefei 230027,P.R.China
关键词:
薄壁结构有限变形粘性流动流固耦合数值模拟
Keywords:
thin-walled structurefinite deformationviscous flowfluid structure couplingnumerical simulation
分类号:
O 347;O 357
文献标志码:
A
摘要:
基于通用计算流体动力学(computational fluid dynamics,CFD)求解器和自编制三维非线性壳体有限元程序,发展一种用于解决三维弹性薄壁结构与粘性流体相互作用问题的数值方法.用CFD求解器Fluent求解粘性流体流动,采用基于三维薄壳非线性理论建立的有限元程序来求解薄壁结构的变形,通过交错方法实现流体和结构的耦合.考察三维非线性壳体有限元程序在解决屈曲和后屈曲问题时的可靠性;通过求解可塌陷直管和粘性流体相互作用问题,检验流固耦合方法的可靠性;研究呼气过程中可塌陷分叉肺管和气流的相互作用问题.重点考察分叉结构中可塌陷管和不同雷诺数流动之间的相互影响.
Abstract:
Using a computational fluid dynamics (CFD) solver and the 3D nonlinear shell finite element code developed by the authors,a numerical method for the interactions between 3D thin-walled structure and fluid was proposed.The viscous flow was solved using the CFD solver,Fluent,while the large deformation of thin-walled structure was solved by the 3D nonlinear shell-based finite element code.The staggered method was used to couple the fluid and the structure.First,a benchmark problem was used to verify the reliability of the finite element code in solving buckling and post-buckling behaviors of thin-walled structures.Second,a problem with a collapsible tube conveying viscous fluid was simulated.The good agreement between the results obtained by the present method and those published in literatures shows the reliability of the present method in dealing with the interactions of thin-walled structure and viscous fluid.Finally,the interaction of fluid and structure in forced expiration was investigated.The emphasis of the project was laid on the effect between collapsible tube and viscous flow in bifurcating airways.

参考文献/References:

[1]Grotberg J B,Jensen O E.柔性管中的生物流体力学[J].流体力学年鉴,2004,36:121-147(英文版).
[2]Hazel A L,Heil M.三维可塌陷管中的定常有限雷诺数流动[J].流体力学杂志,2003,486:79-103(英文版).
[3]Bobovnik G,Mole N,Kutin J 等.用有限体积/有限元耦合方法模拟直管Coriolis 流量计[J].流体和结构,2005,20(6):785-800(英文版).
[4]Penrose J M T,Staples C J.一种模拟心血管问题中流体和结构相互耦合的隐式方法[J].流体中的数值方法国际杂志,2002,40(3-4):467-478(英文版).
[5]Marzo A,Luo X Y,Bertram C D.厚壁可变形管中的三维塌陷和定常流动[J].流体和结构,2005,20(6):817-835(英文版).
[6]Dailey H L,Yalcin H C,Ghadiali S N.用流固耦合方法模拟流动诱导的肺泡上皮细胞变形[J].计算机和结构,2007,85(11-14):1066-1071(英文版).
[7]Scotti C M,Finol E A.腹部动脉瘤的顺应性生物力学:流体-结构相互作用研究[J].计算机和结构,2007,85(11-14):1097-1113(英文版).
[8]LIU M L,TO C W S.基于混合应变的三节点三角形壳单元Ⅰ:非线性理论和增量形式公式[J].计算机和结构,1995,54(6):1031-1056(英文版).
[9]Crisfield M A.一种快速解决“snap-through”现象的增量/迭代方法[J].计算机和结构,1981,13(1-3):55-62(英文版).
[10]XU Z,Accorsi M.流固耦合模拟中的有限元网格更新方法[J].分析和设计中的有限元,2004,40(9-10):1259-1269(英文版).
[11]TO C W S,LIU M L.基于混合应变的三节点三角形壳单元Ⅱ:非线性问题的数值研究[J].计算机和结构,1995,54(6):1057-1076(英文版).
[12]Weibel E R.人体肺部形态学[M].柏林:Springer学术出版社,1963(英文版).

[1]Grotberg J B,Jensen O E.Biofluid mechanics in flexible tubes [J].Annual Review of Fluid Mechanics,2004,36:121-147.
[2]Hazel A L,Heil M.Steady finite-Reynolds-number flows in three-dimensional collapsible tubes [J].Journal of Fluid Mechanics,2003,486:79-103.
[3]Bobovnik G,Mole N,Kutin J,et al.Coupled finite-volume/finite-element modeling of the straight-tube Coriolis flowmeter [J].Journal of Fluids and Structures,2005,20(6):785-800.
[4]Penrose J M T,Staples C J.Implicit fluid-structure coupling for simulation of cardiovascular problems [J].International Journal for Numerical Methods in Fluids,2002,40(3-4):467-478.
[5]Marzo A,Luo X Y,Bertram C D.Three-dimensional collapse and steady flow in thick-walled flexible tubes [J].Journal of Fluids and Structures,2005,20(6):817-835.
[6]Dailey H L,Yalcin H C,Ghadiali S N.Fluid-structure modeling of flow-induced alveolar epithelial cell deformation [J].Computers and Structures,2007,85(11-14):1066-1071.
[7]Scotti C M,Finol E A.Compliant biomechanics of abdominal aortic aneurysms:a fluid-structure interaction study [J].Computers and Structures,2007,85(11-14):1097-1113.
[8]LIU M L,TO C W S.Hybrid strain based three-node flat triangular shell elements I:nonlinear theory and incremental formulation [J].Computers and Structures,1995,54(6):1031-1056.
[9]Crisfield M A.A fast incremental/iterative solution procedure that handles “snap-through” [J].Computers and Structures,1981,13(1-3):55-62.
[10]XU Z,Accorsi M.Finite element mesh update method for fluid-structure interaction simulations [J].Finite Elements in Analysis and Design,2004,40(9-10):1259-1269.
[11]TO C W S,LIU M L.Hybrid strain based three-node flat triangular shell elements II:numerical investigation of nonlinear problems [J].Computers and Structures,1995,54(6):1057-1076.
[12]Weibel E R.Morphometry of the Human Lung [M].Berlin:Springer Academic Press,1963.

备注/Memo

备注/Memo:
收稿日期:2007-10-24;修回日期:2008-03-03
基金项目:香港政府基金资助项目 (PolyU 5273/04E)
作者简介:杨向龙 (1979-),男(汉族),云南省师宗县人,深圳大学讲师、博士.E-mail:xlyang@szu.edu.cn
通讯作者:黄中伟 (1957-),男(汉族),深圳大学教授、博士.中国科学技术大学客座教授.E-mail:huangzw@szu.edu.cn
更新日期/Last Update: 2008-05-08