[1]李雄军.圆参数估计的相对代数距离法[J].深圳大学学报理工版,2006,23(2):147-151.
 LI Xiong-jun.Method for least-squares circle fitting based on the relative algebraic distance[J].Journal of Shenzhen University Science and Engineering,2006,23(2):147-151.
点击复制

圆参数估计的相对代数距离法()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第23卷
期数:
2006年2期
页码:
147-151
栏目:
土木建筑工程
出版日期:
2006-04-30

文章信息/Info

Title:
Method for least-squares circle fitting based on the relative algebraic distance
文章编号:
1000-2618(2006)02-0147-05
作者:
李雄军
深圳大学理学院,深圳 518060
Author(s):
LI Xiong-jun
College of Science, Shenzhen University, Shenzhen 518060, P. R. China
关键词:
最小二乘拟合 圆拟合 参数估计 误差
Keywords:
least-square fitting circle fitting parameter estimate error
分类号:
O 29
文献标志码:
A
摘要:
构造一个新的残差项 , 提出一种新的最小二乘圆估计方法 ——— 相对代数距离法 . 仿真实验表明 , 该法总体性能优于质心法 ; 具有封闭解析解 , 克服了几何距离法的迭代不收敛问题 ; 抗噪声和粗差点影响性能优于代数距离法 , 在样本点较少且 ( ) 分布较集中时有较好的拟合精度 .
Abstract:
The relative algebra distance (RAD) was proposed as a new method for least-square circle fitting by using a new residual error item. Simulation tests show that it has better performance than the centroid estimation method, and the closed-form estimation of the circle parameters without divergence which is the main problem in the geometric distance method. Results also show higher accuracy of parameter estimation under some measurement error and outliers compared with the algebra distance method. This new method shows the best accuracy when the number of measurements is small or at small arcs.
更新日期/Last Update: 2015-06-26