[1]陆楠,陆春一,周春光.快速发现关联规则挖掘算法的并行化方法[J].深圳大学学报理工版,2005,22(4):334-339.
 LU Nan,LU Chun-yi,ZHOU Chun-Guang.The parallel method on fast finding mining algorithms of association rules[J].Journal of Shenzhen University Science and Engineering,2005,22(4):334-339.
点击复制

快速发现关联规则挖掘算法的并行化方法()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第22卷
期数:
2005年4期
页码:
334-339
栏目:
光电与信息工程
出版日期:
2005-10-30

文章信息/Info

Title:
The parallel method on fast finding mining algorithms of association rules
文章编号:
1000-2618(2005)04-0334-06
作者:
陆楠1陆春一2周春光2
1)深圳大学信息工程学院,深圳518060
2)吉林大学计算机科学与技术学院,长春130021
Author(s):
LU Nan1 LU Chun-yi2ZHOU Chun-Guang2
1)College of Information Engineering Shenzhen University Shenzhen 518060 P. R. China
2)Department of Computer Science Jilin University Changchun P. R. China
关键词:
数据挖掘关联规则并行算法概念格频繁项集负载平衡
Keywords:
data mining association rulesparallel algorithm lattice theoryfrequent item setload balance
分类号:
TP 391
文献标志码:
A
摘要:
分析挖掘关联规则主要并行算法及性能.针对算法中负载平衡和时间响应问题,提出一种高效可行的挖掘关联规则的 NA (N-transaction algorithms)并行算法,给出了NA算法的策略.通过前期实验结果表明,这种快速发现关联规则的并行算法在计算大项集过程中不需要同步和交换数据,在任意情况下,可独立计算局部大项集.
Abstract:
Parallel algorithms of mining association rules were introduced. A new and highly efficient algorithm of NA(N-transaction algorithms) was developed to balance the load and response of time in the algorithm. An analysis on performance of algorithm and its strategy was made. By our early experiment running,results show that the parallel algorithms for fast finding association rules do not need synchronization and data exchange in computing big item set. In addition,this new algorithm suffices to compute local big itemset by itself.

相似文献/References:

[1]明仲,林朝哲,蔡树彬.并行PSVM算法及其在入侵检测中的应用[J].深圳大学学报理工版,2010,27(3):327.
 MING Zhong,LIN Chao-zhe,and CAI Shu-bin.Parallel proximal support vector machine and its application in intrusion detection[J].Journal of Shenzhen University Science and Engineering,2010,27(4):327.
[2]陆楠,杜文峰,梁正平.基于FP-tree目录分割自适应算法[J].深圳大学学报理工版,2011,28(No.4(283-376)):341.
 LU Nan,DU Wen-feng,and LIANG Zheng-ping.A self-adaptive algorithm for the problem of catalog segmentation based on FP-tree[J].Journal of Shenzhen University Science and Engineering,2011,28(4):341.
[3]刘大有,董婥,王生生.基于矩形代数和公共模式方法的相似图像检索[J].深圳大学学报理工版,2012,29(No.2(095-188)):100.[doi:10.3724/SP.J.1249.2012.02100]
 LIU Da-you,DONG Chuo,and WANG Sheng-sheng.An improved similarity retrieval of images based on CPM and rectangle algebra[J].Journal of Shenzhen University Science and Engineering,2012,29(4):100.[doi:10.3724/SP.J.1249.2012.02100]
[4]王娜,李霞,徐红英.社会网络分析之社区发现研究[J].深圳大学学报理工版,2014,31(1):35.[doi:10.3724/SP.J.1249.2014.01035]
 Wang Na,Li Xia,and Xu Hongying.Research on community detection in social network[J].Journal of Shenzhen University Science and Engineering,2014,31(4):35.[doi:10.3724/SP.J.1249.2014.01035]
[5]陆楠,周春光.WEB数据挖掘中异构数据集成问题的研究[J].深圳大学学报理工版,2002,19(3):31.
 LU Nan,ZHOU Chun-guang.Researches of Different Data Integration on WEB Data Mining[J].Journal of Shenzhen University Science and Engineering,2002,19(4):31.
[6]陆 楠,周春光.互连性层次聚类法在交易数据聚类分析中的应用[J].深圳大学学报理工版,2003,20(1):63.
 LU Nan and ZHOU Chun-guang.The Application of Clustering Analysis to Transactional Data-set with Interconnecting Cluster Method[J].Journal of Shenzhen University Science and Engineering,2003,20(4):63.
[7]杨峻山,纪震,谢维信,等.基于粒子群优化的生物组学数据分类模型选择[J].深圳大学学报理工版,2016,33(3):264.[doi:10.3724/SP.J.1249.2016.03264]
 Yang Junshan,Ji Zhen,Xie Weixin,et al.Model selection based on particle swarm optimization for omics data classification[J].Journal of Shenzhen University Science and Engineering,2016,33(4):264.[doi:10.3724/SP.J.1249.2016.03264]
[8]陈星宇,周展,黄俊文,等.基于关键词挖掘的客户细分方法[J].深圳大学学报理工版,2017,34(3):300.[doi:10.3724/SP.J.1249.2017.03300]
 Chen Xingyu,Zhou Zhan,Huang Junwen,et al.A keyword-based mining method for customer segmentation[J].Journal of Shenzhen University Science and Engineering,2017,34(4):300.[doi:10.3724/SP.J.1249.2017.03300]
[9]谷建伟,隋顾磊,李志涛,等.基于ARIMA-Kalman滤波器数据挖掘模型的油井产量预测[J].深圳大学学报理工版,2018,35(6):575.[doi:10.3724/SP.J.1249.2018.06575]
 GU Jianwei,SUI Gulei,LI Zhitao,et al.Oil well production forecasting method based on ARIMA-Kalman filter data mining model[J].Journal of Shenzhen University Science and Engineering,2018,35(4):575.[doi:10.3724/SP.J.1249.2018.06575]
[10]何玉林,等.大规模数据集聚类算法的研究进展[J].深圳大学学报理工版,2019,36(1):4.[doi:10.3724/SP.J.1249.2019.01004]
 HE Yulin,and HUANG Zhexue,A review on clustering algorithms for large-scale data sets[J].Journal of Shenzhen University Science and Engineering,2019,36(4):4.[doi:10.3724/SP.J.1249.2019.01004]

更新日期/Last Update: 2015-10-16