[1]罗雪晖,李霞,张基宏.支持向量机及其应用研究[J].深圳大学学报理工版,2003,20(3):40-46.
 LUO Xue-hui,LI Xia and ZHANG Ji-hong.Introduction to Support Vector Machine and Its Applications[J].Journal of Shenzhen University Science and Engineering,2003,20(3):40-46.
点击复制

支持向量机及其应用研究()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第20卷
期数:
2003年3期
页码:
40-46
栏目:
电子与信息工程
出版日期:
2003-09-30

文章信息/Info

Title:
Introduction to Support Vector Machine and Its Applications
文章编号:
1000-2618(2003)03-0040-07
作者:
罗雪晖李霞张基宏
深圳大学信息工程学院, 深圳518060
Author(s):
LUO Xue-hui LI Xia and ZHANG Ji-hong
College of Information Engineer Shenzhen University, Shenzhen 518060, P .R .China
关键词:
机器学习统计学习理论支持向量机模式识别
Keywords:
machine learning statistical learning theory support vector machine pattern recognition
分类号:
TN 911
文献标志码:
A
摘要:
支持向量机是一种新型机器学习方法,因其出色的学习性能,已成为当前国际机器学习界的研究热点.作者介绍了支持向量机的理论依据及其研究进展.
Abstract:
Support vector machine (SVM) , a novel machine learning method, has become a hotspot because of its excellent learning performance. This paper introduces the fundamental theory underlying the SVM, its current state-of-the-art as well as its applications in pattern recognition.

相似文献/References:

[1]林春漪,尹俊勋,高 学,等.基于统计学习的多层医学图像语义建模方法[J].深圳大学学报理工版,2007,24(2):138.
 LIN Chun-yi,YIN Jun-xun,GAO Xue,et al.A multi-level medical image semantic modeling approach based on statistical learning[J].Journal of Shenzhen University Science and Engineering,2007,24(3):138.
[2]潘长城,徐晨,李国.解全局优化问题的差分进化策略[J].深圳大学学报理工版,2008,25(2):211.
 PAN Chang-cheng,XU Chen,and LI Guo.Differential evolutionary strategies for global optimization[J].Journal of Shenzhen University Science and Engineering,2008,25(3):211.
[3]李婵,王俊杰,邬国锋,等.基于叶片光谱特征的农业区域植物分类[J].深圳大学学报理工版,2018,35(3):307.[doi:10.3724/SP.J.1249.2018.03307]
 LI Chan,WANG Junjie,WU Guofeng,et al.Classification of agricultural plants based on leaf spectral features[J].Journal of Shenzhen University Science and Engineering,2018,35(3):307.[doi:10.3724/SP.J.1249.2018.03307]
[4]张峰,钱辉,董春茹,等.随机状态下基于期望经验回放的Q学习算法[J].深圳大学学报理工版,2020,37(2):202.[doi:10.3724/SP.J.1249.2020.02202]
 ZHANG Feng,QIAN Hui,DONG Chunru,et al.An expected experience replay based Q-learning algorithm with random state transition[J].Journal of Shenzhen University Science and Engineering,2020,37(3):202.[doi:10.3724/SP.J.1249.2020.02202]
[5]岳琴,魏巍,冯凯,等.自适应稀疏表示引导的无监督降维[J].深圳大学学报理工版,2020,37(4):425.[doi:10.3724/SP.J.1249.2020.04425]
 YUE Qin,WEI Wei,FENG Kai,et al.Adaptive sparse representation guided unsupervised dimensionality reduction[J].Journal of Shenzhen University Science and Engineering,2020,37(3):425.[doi:10.3724/SP.J.1249.2020.04425]
[6]赵朋亚,傅湘玲,仵伟强,等.基于标签传播的协同分类欺诈检测方法[J].深圳大学学报理工版,2020,37(5):482.[doi:10.3724/SP.J.1249.2020.05482]
 ZHAO Pengya,FU Xiangling,et al.Collective classification method based on label propagation for fraud detection[J].Journal of Shenzhen University Science and Engineering,2020,37(3):482.[doi:10.3724/SP.J.1249.2020.05482]

更新日期/Last Update: 2015-11-13