[1]陈文胜.Stokes问题的Galerkin-Shannon小波方法[J].深圳大学学报理工版,2001,18(1):33-38.
 CHEN Wen-sheng.Galerkin-Shannon Wavelet Methods for the Stokes Problem[J].Journal of Shenzhen University Science and Engineering,2001,18(1):33-38.
点击复制

Stokes问题的Galerkin-Shannon小波方法()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第18卷
期数:
2001年1期
页码:
33-38
栏目:
电子与信息科学
出版日期:
2001-03-30

文章信息/Info

Title:
Galerkin-Shannon Wavelet Methods for the Stokes Problem
文章编号:
1000-2618(2001)01-0033-06
作者:
陈文胜
深圳大学理学院, 深圳518060
Author(s):
CHEN Wen-sheng
College of Science Shenzhen University, Shenzhen 518060, P.R.China
关键词:
Stokes 问题Shannon 小波Galerkin 方法刚度矩阵
Keywords:
Stokes problemShannon wavelet Galerkin method stiffness matrix
分类号:
O 241.8 ;O 174.2
文献标志码:
A
摘要:
将上半平面区域内的Stokes 方程组Neumann 边值问题归化为Hadamard 型强奇异自然积分方程组, 然后用Galerkin-Shannon 小波方法求解其等价的变分问题, 得到了十分简便的刚度矩阵计算公式.对一个22j+2×22j+2 阶的刚度矩阵, 仅需计算其中22j +1 个元素, 大大降低计算量.
Abstract:
In this paper, a Neumann boundary value problem of Stokes equations in the upperplane is reduced to natural integral equations with hypersingular kernels in the sense of Hadamard finite part. Consequently, Galerkin-Shannon wavelet method is applied to its equivalent variational problem on the boundary. Simple computational formulae of the entries in stiffness matrix are obtained .These show that we only need to calculate 22j+1 elements of a 22j+2 ×22j+2 stiffness matrix .
更新日期/Last Update: 2015-11-27