[1]胡晓帆.函数最大(最小)值的探讨[J].深圳大学学报理工版,1997,14(2-3):92-96.
 Hu Xiaofan.On Maximum and Minimum of Function[J].Journal of Shenzhen University Science and Engineering,1997,14(2-3):92-96.
点击复制

函数最大(最小)值的探讨()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第14卷
期数:
1997年2-3期
页码:
92-96
栏目:
电子与信息科学
出版日期:
1997-09-30

文章信息/Info

Title:
On Maximum and Minimum of Function
作者:
胡晓帆
深圳大学软科学系, 深圳518060
Author(s):
Hu Xiaofan
Dept. of Soft Science Shenzhen University, Shenzhen 518060, P .R .China
分类号:
O 13
摘要:
运用布定理证明“一元函数只有一个驻点时, 其极大(极小)值就是最大(最小)值” .从教学法研究角度探讨上述结论推广到多元函数时应附加的条件, 根据 Hesse 矩阵的性质及方向导数角度给出了二元函数的两个充分条件, 并给予证明及示例;经比较,后者条件较弱,使用较广.最后叙述了 n 元函数的两个充分条件.
Abstract:
Darboux’ s theory is used to prove that the extreme ualue of univariate function is its maximum or minimum when it has only one critical point .In terms of the teaching method researchs, the conditions of ex tending the conclusion to multivariate function are investigated .Based on the properties of Hessian matrix and its directed derivative angles , two sufficient conditions on bivariate function are given , proved , examplified , and compared .One of the conditions weaker , and more widely used .Finally , two sufficient conditions on multivariate function are discussed.
更新日期/Last Update: 2016-03-15