[1]林祥都.关于刚度矩阵数值积分的讨论[J].深圳大学学报理工版,1989,(1-2):54-58.
 Lin Xiangdu.Discussion on Numerical Integration of Stiffness Matrix[J].Journal of Shenzhen University Science and Engineering,1989,(1-2):54-58.
点击复制

关于刚度矩阵数值积分的讨论()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
期数:
1989年1-2期
页码:
54-58
栏目:
环境与能源
出版日期:
1989-06-30

文章信息/Info

Title:
Discussion on Numerical Integration of Stiffness Matrix
作者:
林祥都
深圳大学软科学系
Author(s):
Lin Xiangdu
文献标志码:
A
摘要:
对于析架、刚架及薄壁结构等,人们很容易进行机动分析,而对于板、壳连续体则不然。本文通过建立节点外载与高斯积分点上的应变之关系,给出静不定度的普遍定义,说明刚度矩阵积分.汽数目的确定必须从全结构考虑,使得积分点上的应变总数大于结构的节点自由度数 .否则刚度矩阵奇异。
Abstract:
The indeterminate analysis on the truss, rigid frame or thin wall structures is easy, but it is not on the plate or shell structures .In this paper, the relation between the nodal loads and the strains at the Gauss integration points is established .The generalized definition on the degree of statistical indeterminacy is given, The determination of the number of integration point,when numerical integration is required to evaluate the stiffness matrix, is illustrated,i, e.,the number of the strains at the integration points h must be larger than the number of the degree of the nodal freedom a in the structure, otherwise the stiffness matrix is singular.
更新日期/Last Update: 2016-05-10