[1]侯国屏.Gear法用于二阶线性微分方程组时的稳定性与局部截断误差分析[J].深圳大学学报理工版,1986,(3):34-37.
Hou Guoping.The Stability and Local Truncation Error in Applying Gear’s Method to Second-Order Differential Equations[J].Journal of Shenzhen University Science and Engineering,1986,(3):34-37.
点击复制
Gear法用于二阶线性微分方程组时的稳定性与局部截断误差分析(
)
《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]
- 卷:
-
- 期数:
-
1986年3期
- 页码:
-
34-37
- 栏目:
-
环境与能源
- 出版日期:
-
1986-09-30
文章信息/Info
- Title:
-
The Stability and Local Truncation Error in Applying Gear’s Method to Second-Order Differential Equations
- 作者:
-
侯国屏
-
- Author(s):
-
Hou Guoping
-
-
- 文献标志码:
-
A
- 摘要:
-
本文讨论了将Gear提出的数值积分方法直接用于微分方程组A d^2/〖dt〗^2 X+B d/dt X+CX=f时算法的稳定性与局部截断误差,证明了只要矩阵C非奇异,A、C均正定,B非负定时,一阶和二阶Gear法仍是绝对稳定的,其局部截断误差分别为0(h2)和0(h3)。
- Abstract:
-
In this paper analysis is made of the stability and the local truncation error when the Gear’s Method is directly applied to the system of second order differential equations A d^2/〖dt〗^2 X+B d/dt X+CX=f.The conclusion obtained is that the first-order and second-order Gear methods still have the A-stability and their local truncation errors are respectively 0(h2) and 0(h3) provided matrix C is non-singular, A and C are positive definite, and B is non-negative definite.
更新日期/Last Update:
2016-05-23