[1]毛超林.关于向量连续函数的一致逼近[J].深圳大学学报理工版,1986,(1):1-7.
Mao Chaolin.On the Uniform Approximation of Vector Continuous Functions[J].Journal of Shenzhen University Science and Engineering,1986,(1):1-7.
点击复制
关于向量连续函数的一致逼近(
)
《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]
- 卷:
-
- 期数:
-
1986年1期
- 页码:
-
1-7
- 栏目:
-
环境与能源
- 出版日期:
-
1986-03-31
文章信息/Info
- Title:
-
On the Uniform Approximation of Vector Continuous Functions
- 作者:
-
毛超林
-
- Author(s):
-
Mao Chaolin
-
-
- 文献标志码:
-
A
- 摘要:
-
本文将Machado定理推广至紧集X上连续函数的任意集合.G.E.Silov[7]、 E. Bishop[1]、 Glicksberg[4]、D.Feyel 及 A. La Pradellew 等人运用反对称紧 集的概念,分别将Stone-Weierstrass定理成功地推广到子代数继而子空间最后凸子锥上.Machado151及Ransford[8]改进了 Bishop定理并简化其证明.1985年 4月,R.B.Burckel在一封给D.Feyel的信中,提出能否将Machado定理推广到[2]中情形的问题。
本文肯定地回答了上述问题,并证明了Machado 定理一个非常广泛的特征,得到了包括上述所有结论的定理。
- Abstract:
-
This paper is an effort to generalize the Theorem of Machado to an arbitrary set of continuous functions on an compact X.
G.E,Silov[7],E.Bishop[1],Glicksberg[4],D.FeyelandA. LePradelle[2] e already generalized successfully the Theorem of Stone-weierstrass to algebra, then to subspace and convex cone, utilizing the concept of antisymmetric compact. Machado[5] and then Ransford[8] have ameliorated result and simplified the proof of the Theorem of Bishop. In a letter to Feyel,R.B.Burckel raised the question whether the Theorem of Machado could be extended to the situation described in [2].
This paper gives a positive reply to the above-mentioned question and proves the very general character of the Theorem of Mhcado,which leads to a theorem including all the results of the aforesaid authors.
更新日期/Last Update:
2016-05-23