[1]姜功建.具第二类Chebyshev节点的Hermite-Fejer插值算子的收敛性估计[J].深圳大学学报理工版,1985,(4):14-20.
 Jiang Gongjian.The Convergence Estimates of the Hermite-Fejer Interpolation Operator with the Chebyshev Nodes of the Second Kind[J].Journal of Shenzhen University Science and Engineering,1985,(4):14-20.
点击复制

具第二类Chebyshev节点的Hermite-Fejer插值算子的收敛性估计()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
期数:
1985年4期
页码:
14-20
栏目:
环境与能源
出版日期:
1985-12-31

文章信息/Info

Title:
The Convergence Estimates of the Hermite-Fejer Interpolation Operator with the Chebyshev Nodes of the Second Kind
作者:
姜功建
芜湖师专数学系
Author(s):
Jiang Gongjian
Wuhu Teachers’ Training College
文献标志码:
A
摘要:
本文对第二类 Chebyshev 多项式 Un(x) , bk Un(x) 的零点, Hn(f,x) 是以此为基点的 Hermite-Fejer 的插值算子,假定 f(x)?C1[-1,1] f(x)?C[-1,1] ,我们得到有关它的逼近估计的相应结果,并对某一特定的函数类得到了较为精确的下界估计 .
Abstract:
Let Hn(f,x) be  polynomial  of  Hermite-Fejer interpolation, which is based on the zeros bk=coskπ/n+1 of the Chebyshev polynomial Un(x) of the second kind. Suppose that f(x)?C1[-1,1] and f(x) ?C[-1,1], we obtain the corresponding results concerning the asymptotic estimate. Then, by further estimating, the lower bound of sup {|Hn (f, x)-f(x)|:f(x)?Hn } is investigated.
更新日期/Last Update: 2016-05-23