[1]杨承恩,梁枢里,万作新.平面格图中定长圈的计数[J].深圳大学学报理工版,1985,(3):49-59.
 Yang Chengen,Liang Shuli,Wan Zuoxin.Counting the Number of Cycles of Length 2K in a Lattice Graph[J].Journal of Shenzhen University Science and Engineering,1985,(3):49-59.
点击复制

平面格图中定长圈的计数()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
期数:
1985年3期
页码:
49-59
栏目:
环境与能源
出版日期:
1985-09-30

文章信息/Info

Title:
Counting the Number of Cycles of Length 2K in a Lattice Graph
作者:
杨承恩1梁枢里1万作新2
(1)长沙铁道学院
(2)深圳大学经济管理系
Author(s):
Yang Chengen1 Liang Shuli1Wan Zuoxin2
(1)Changsha Railway Institute
(2)Department of Economic Management
文献标志码:
A
摘要:
本文讨论了平面格图(m,n)中定长圈的计数问题。对于m = 2,3,首先建立了递推方程组,然后找到了计数公式,并提供了易于在计算机上实现的一拟多项式算法:该算法的空间与时间复杂性分别为o(k)与o(k2),所提供的解法原则上适用于m>3的情况。
Abstract:
The problem of counting the number of cycles of length 2k in a lattice graph(m,n) is discussed. At first, for m=2, 3, two counting formulas are established. Then a set of recurrence formulas is given. which is used to compute. We also develop a pseudo-polynomial algorithm which can be easily implemented in a computer. The space complexity and time complexity are 0(K) and 0(K2) respectively. This approach is suitable for m>3 in principle.
更新日期/Last Update: 2016-05-23