参考文献/References:
[1]Finn W D L.液化后流动变形[C]//Pak R Y S.土动力学与液化2000.丹佛:ASCE.2000:108-122 (英文版).
[2]Seed H B,Seed R B,Harder Jr,等.下圣费南多土坝的再次评估 [R].华盛顿: 美国陆军工兵,1989 (英文版).
[3]Rowe P W.用于接触颗粒集合静力平衡的应力剪胀性[C]//伦敦皇家学会论文集,A系列,1962,269:500-527 (英文版).
[4]Schofield A N,Wroth C P.临界状态土力学 [M].伦敦: McGraw-Hill,1968 (英文版).
[5]Casagrande A.砂土的液化和往复变形,临界状态观点 [C]//哈佛土力学系列第88期.剑桥: 哈佛大学,1976 (英文版).
[6]Poulos S J.稳定状态变形 [J].岩土工程学报.1981,107(5):553-562 (英文版).
[7]Been K,Jefferies M G.砂土的状态参数 [J].岩土技术,1985,35(2):99-112 (英文版).
[8]Poulos S J,Castro G,France J W.液化的评定方法[J].岩土工程学报,1985,111(6):772-792 (英文版).
[9]Vaid Y P,Chern J C.饱和砂土往复与单调加载不排水响应[C]//往复加载条件下土工试验技术进展.底特律:ASCE,1985:120-147 (英文版).
[10]Vaid Y P,Thomas J.液化及液化后砂土的性质[J].岩土工程学报,1995,121(2):163-179? (英文版).
[11]Vaid Y P,Sivathayalan S.Fraser三角洲砂土在单剪和三轴试验中静态与往复加载液化势[J].加拿大岩土工程学报,1996,33(2):281-289 (英文版).
[12]Riemer M F,Seed R B.影响稳定状态线表征位置的因素[J].岩土及岩土环境工程学报,1997,123(3):281-288 (英文版).
[13]Yoshimine M,Ishihara K,Vargas W.主应力方向和中间主应力对砂土不排水剪切性质的影响[J].土与基础,1998,38(3):179-188 (英文版).
[14]Mooney M A,Viggiani G,Finno R J.散粒介质中不排水剪切带变形 [J].工程力学学报,1997,123(6):577-585 (英文版).
[15]Mooney M A,Finno R J, Viggiani G.唯一的砂土临界状态 [J].岩土及岩土环境工程学报,1998,124(11):1128-1138 (英文版).
[16]Nakata Y,Hyodo M,Murata H,Yasufuku N.主应力旋转条件下砂土的流动变形[J].土与基础,1998,38(2):115-128 (英文版).
[17]Tobita Y.散粒材料本构模型中的接触张量[C]//Satake M.美国-日本散粒材料微观力学研讨会论文集,纽约: Elsevier,1988:263-270 (英文版).
[18]Oda M, Nakayama H.在屈服方程中引入砂土内在各向异性[C]// Satake M.散粒材料微观力学.阿姆斯特丹: Elsevier,1988:81-90 (英文版).
[19]Oda M,Memat-Nasser S,Konishi J.散粒材料中应力导致的各向异性 [J].土与基础,1985,23(3):85-97 (英文版).
[20]Li X S,Dafalias Y F.无粘性土的剪胀性[J].岩土技术,2000,50(4):449-460 (英文版).
[21]Li X S.与状态相关的剪胀性砂土模型[J].岩土技术,2002,52(3):173-186 (英文版).
[22]明海燕,李相崧,Y F Dafalias.砂土各向异性对挡土墙抗震性能影响数值分析[J].深圳大学学报理工版,2007,24(3):221-227.
[23]Curray J R.二维朝向数据的分析 [J].地质学报,1956,64:117-131 (英文版).
[24]Tobita Y.组构张量 [C]//Satake M.散粒材料力学,里约热内卢: 国际土力学与基础工程学会技术委员会TC13,1989:6-9 (英文版).
[1]Finn W D L.Post-liquefaction flow deformation [C]//Pak R Y S ed.Soil dynamics and liquefaction 2000.Geotechnical Special Publication, Denver:ASCE,2000:108-122.
[2]Seed H B,Seed R B,Harder Jr,et al.Re-evaluation of the lower San Fernando dam [R].Washington,DC: Department of Army,US.Army Corps of Engineers,1989.
[3]Rowe P W.The stress-dilatancy relation for static equilibrium of an assembly of particles in contact [C]//Proceedings of Royal Society of London,Series A,1962,269:500-527.
[4]Schofield A N,Wroth C P.Critical State Soil Mechanics [M].London: McGraw-Hill,1968.
[5]Casagrande A.Liquefaction and cyclic deformation of sands,a critical review [C]//Harvard soil mechanics series,No.88.Cambridge: Harvard University,1976.
[6]Poulos S J.The steady state of deformation [J].Journal of Geotechnical Engineering Division,1981,107(5):553-562.
[7]Been K,Jefferies M G.A state parameter for sands [J].Géotechnique,1985,35(2):99-112.
[8]Poulos S J,Castro G,France J W.Liquefaction evaluation procedure [J].Journal of Geotechnical Engineering,1985,111(6):772-792.
[9]Vaid Y P,Chern J C.Cyclic and monotonic undrained response of saturated sands [C]//Advances in the Art of Testing Soils Under Cyclic Loading.Detroit: ASCE National Convention,1985:120-147.
[10]Vaid Y P,Thomas J.Liquefaction and postliquefaction behavior of sand [J].Journal of Geotechnical Engineering,1995,121(2):163-179.
[11]Vaid Y P,Sivathayalan S.Static and cyclic liquefaction potential of Fraser Delta sand in simple shear and triaxial tests [J].Canadian Geotechnical Journal,1996,33(2):281-289.
[12]Riemer M F,Seed R B.Factors affecting apparent position of steady-state line [J].Journal of Geotechnical and Geoenvironmental Engineering,1997,123(3): 281- 288.
[13]Yoshimine M,Ishihara K,Vargas W.Effects of principal stress direction and intermediate principal stress on undrained shear behavior of sand [J].Soils and Foundations,1998,38(3):179-188.
[14]Mooney M A,Viggiani G,Finno R J.Undrained shear band deformation in granular media [J].Journal of Engineering Mechanics.1997,123(6):577-585.
[15]Mooney M A,Finno R J,Viggiani G.A unique critical state for sand [J].Journal of Geotechnical and Geoenvironmental Engineering,1998,124(11):1128- 1138.
[16]Nakata Y,Hyodo M,Murata H,Yasufuku N.Flow deformation of sands subjected to principal stress rotation [J].Soils and Foundations,1998,38(2):115-128.
[17]Tobita Y.Contact tensor in constitutive model for granular materials[C]//Satake M.US-Japan seminar on micromechanics of granular materials,New York: Elsevier,1988:263-270.
[18]Oda M,Nakayama H.Introduction of inherent anisotropy of soils in the yield function [C]// Satake M.Micromechanics of Granular Materials.Amsterdam: Elsevier,1988:81-90.
[19]Oda M,Memat-Nasser S,Konishi J.Stress-induced anisotropy in granular masses [J].Soils and Foundations.1985,23(3):85-97.
[20]Li X S,Dafalias Y F.Dilatancy for cohesionless soils [J].Géotechnique,2000,50(4):449-460.
[21]Li X S.A sand model with state-dependent dilatancy [J].Géotechnique,2002,52(3):173-186.
[22]MING Hai-yan,LI Xiang-song,Y F Dafalias.Numerical study of impact of soil anisotropy on seismic performance of retaining structure[J].Journal of Shenzhen University Science and Engineering,2007,24(3):221-227(in Chinese).
[23]Curray J R.Analysis of two-dimensional orientation data [J].Journal of Geology,1956,64:117-131.
[24]Tobita Y.Fabric tensor [C]//Satake M.Mechanics of granular materials.Rio De Janeiro: TC13,International Society of Soil Mechanics and Foundation Engineering,1989:6-9.
相似文献/References:
[1]苏 栋,李相崧.饱和砂土场地在小震下的响应(英文)[J].深圳大学学报理工版,2007,24(4):339.
SU Dong and LI Xiang-song.Response of saturated sand ground under small earthquake loading[J].Journal of Shenzhen University Science and Engineering,2007,24(4):339.
[2]苏栋,袁胜强,李锦辉.水平单向及多向载荷下单桩响应的数值研究[J].深圳大学学报理工版,2011,28(No.5(377-470)):389.
SU Dong,YUAN Sheng-qiang,and LI Jin-hui.Numerical study on response of a single pile under unidirectional and multidirectional horizontal loadings[J].Journal of Shenzhen University Science and Engineering,2011,28(4):389.
[3]蒋红英,宋亮亮,罗双华,等.散粒体的自组织临界性分析[J].深圳大学学报理工版,2015,32(1):96.[doi:10.3724/SP.J.1249.2015.01096]
Jiang Hongying,Song Liangliang,Luo Shuanghua,et al.Analysis of self-organized criticality in the granular mixtures[J].Journal of Shenzhen University Science and Engineering,2015,32(4):96.[doi:10.3724/SP.J.1249.2015.01096]
[4]夏良平,崔洪亮.基于金属开口环阵列的太赫兹各向异性超材料[J].深圳大学学报理工版,2019,36(2):152.[doi:10.3724/SP.J.1249.2019.02152]
XIA Liangping and CUI Hongliang.Terahertz anisotropic metamaterials based on metal slit ring array[J].Journal of Shenzhen University Science and Engineering,2019,36(4):152.[doi:10.3724/SP.J.1249.2019.02152]
[5]杨仲轩,李相崧,明海燕.砂土各向异性和不排水剪切特性研究[J].深圳大学学报理工版,2009,26(2):158.
YANG Zhong-xuan,LI Xiang-song,and MING Hai-yan.Fabric anisotropy and undrained shear behavior of granular soil[J].Journal of Shenzhen University Science and Engineering,2009,26(4):158.