[1]明海燕,李相崧,Y.F.Dafalias.砂土内在各向异性的本构模拟[J].深圳大学学报理工版,2007,24(4):331-338.
 MING Hai-yan,LI Xiang-song,and Y.F.Dafalias.Constitutive modeling of fabric anisotropy of sand[J].Journal of Shenzhen University Science and Engineering,2007,24(4):331-338.
点击复制

砂土内在各向异性的本构模拟()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第24卷
期数:
2007年4期
页码:
331-338
栏目:
土木建筑工程
出版日期:
2007-10-30

文章信息/Info

Title:
Constitutive modeling of fabric anisotropy of sand
文章编号:
1000-2618(2007)04-0331-08
作者:
明海燕1李相崧2Y.F.Dafalias3
1)深圳大学土木工程学院,深圳市土木工程耐久性重点实验室,深圳 518060;
2)香港科技大学土木工程系,香港;
3)加州大学戴维斯分校土木工程系,美国
Author(s):
MING Hai-yan1LI Xiang-song2and Y.F.Dafalias3

1)College of Civil Engineering,Shenzhen Municipal Key,Laboratory on Durability of Civil Engineering,Shenzhen University,Shenzhen 518060,P.R.China
2)Department of Civil Engineering,Hong Kong University of Science and Technology,Hong Kong,P.R.China
3)Department of Civil Engineering,University of California,Davis,California,USA

关键词:
砂土各向异性本构模型剪胀性塑性
Keywords:
sandanisotropyconstitutive modelsdilatancyplasticity
分类号:
TUY 435
文献标志码:
A
摘要:
基于砂土的应力-应变-强度关系受土骨架结构朝向和主应力方向间相对关系影响,相同状态砂土在三轴压缩条件下剪切膨胀,在三轴拉伸条件下剪切收缩的研究.介绍一个模拟砂土内在各向异性的本构模型.模型采用描述材料内在各向异性的二阶对称组构张量和各向异性状态变量(组构张量和应力张量的联合不变量)描述土的各向异性.在e-p平面,临界状态线不固定,而与各向异性状态变量相关.塑性模量也与各向异性状态变量相关.模型能在很大应力和密度变化范围内模拟砂土的剪缩和剪胀行为,特别是主应力方向和土骨架结构朝向间夹角对砂土性质的影响.模拟结果与实验数据吻合.
Abstract:
Recent laboratory investigations indicate that the stress-strain-strength responses of loose sands are appreciably affected by the fabric orientation of the soil with respect to the frame of principal stresses.A sand specimen exhibiting a dilative response during triaxial compression may show a contractive response during triaxial extension under otherwise identical conditions.A plasticity constitutive model for simulating inherently anisotropic sand behavior is presented.A second-order symmetric fabric tensor is defined to describe the material inherent anisotropy.The location of the critical state line is not fixed but modified to be a function of the anisotropic state variable, which is a scalar defined in terms of a joint invariant of the fabric tensor and the stress tensor. The plastic modulus is also modified to be dependent on the anisotropic state variable. By these two modifications, an existing bounding surface model can successfully simulate both the contractive and dilative responses of sand over a wide range of variations in stress and density.

参考文献/References:

[1]Finn W D L.液化后流动变形[C]//Pak R Y S.土动力学与液化2000.丹佛:ASCE.2000:108-122 (英文版).
[2]Seed H B,Seed R B,Harder Jr,等.下圣费南多土坝的再次评估 [R].华盛顿: 美国陆军工兵,1989 (英文版).
[3]Rowe P W.用于接触颗粒集合静力平衡的应力剪胀性[C]//伦敦皇家学会论文集,A系列,1962,269:500-527 (英文版).
[4]Schofield A N,Wroth C P.临界状态土力学 [M].伦敦: McGraw-Hill,1968 (英文版).
[5]Casagrande A.砂土的液化和往复变形,临界状态观点 [C]//哈佛土力学系列第88期.剑桥: 哈佛大学,1976 (英文版).
[6]Poulos S J.稳定状态变形 [J].岩土工程学报.1981,107(5):553-562 (英文版).
[7]Been K,Jefferies M G.砂土的状态参数 [J].岩土技术,1985,35(2):99-112 (英文版).
[8]Poulos S J,Castro G,France J W.液化的评定方法[J].岩土工程学报,1985,111(6):772-792 (英文版).
[9]Vaid Y P,Chern J C.饱和砂土往复与单调加载不排水响应[C]//往复加载条件下土工试验技术进展.底特律:ASCE,1985:120-147 (英文版).
[10]Vaid Y P,Thomas J.液化及液化后砂土的性质[J].岩土工程学报,1995,121(2):163-179? (英文版).
[11]Vaid Y P,Sivathayalan S.Fraser三角洲砂土在单剪和三轴试验中静态与往复加载液化势[J].加拿大岩土工程学报,1996,33(2):281-289 (英文版).
[12]Riemer M F,Seed R B.影响稳定状态线表征位置的因素[J].岩土及岩土环境工程学报,1997,123(3):281-288 (英文版).
[13]Yoshimine M,Ishihara K,Vargas W.主应力方向和中间主应力对砂土不排水剪切性质的影响[J].土与基础,1998,38(3):179-188 (英文版).
[14]Mooney M A,Viggiani G,Finno R J.散粒介质中不排水剪切带变形 [J].工程力学学报,1997,123(6):577-585 (英文版).
[15]Mooney M A,Finno R J, Viggiani G.唯一的砂土临界状态 [J].岩土及岩土环境工程学报,1998,124(11):1128-1138 (英文版).
[16]Nakata Y,Hyodo M,Murata H,Yasufuku N.主应力旋转条件下砂土的流动变形[J].土与基础,1998,38(2):115-128 (英文版).
[17]Tobita Y.散粒材料本构模型中的接触张量[C]//Satake M.美国-日本散粒材料微观力学研讨会论文集,纽约: Elsevier,1988:263-270 (英文版).
[18]Oda M, Nakayama H.在屈服方程中引入砂土内在各向异性[C]// Satake M.散粒材料微观力学.阿姆斯特丹: Elsevier,1988:81-90 (英文版).
[19]Oda M,Memat-Nasser S,Konishi J.散粒材料中应力导致的各向异性 [J].土与基础,1985,23(3):85-97 (英文版).
[20]Li X S,Dafalias Y F.无粘性土的剪胀性[J].岩土技术,2000,50(4):449-460 (英文版).
[21]Li X S.与状态相关的剪胀性砂土模型[J].岩土技术,2002,52(3):173-186 (英文版).
[22]明海燕,李相崧,Y F Dafalias.砂土各向异性对挡土墙抗震性能影响数值分析[J].深圳大学学报理工版,2007,24(3):221-227.
[23]Curray J R.二维朝向数据的分析 [J].地质学报,1956,64:117-131 (英文版).
[24]Tobita Y.组构张量 [C]//Satake M.散粒材料力学,里约热内卢: 国际土力学与基础工程学会技术委员会TC13,1989:6-9 (英文版).

[1]Finn W D L.Post-liquefaction flow deformation [C]//Pak R Y S ed.Soil dynamics and liquefaction 2000.Geotechnical Special Publication, Denver:ASCE,2000:108-122.
[2]Seed H B,Seed R B,Harder Jr,et al.Re-evaluation of the lower San Fernando dam [R].Washington,DC: Department of Army,US.Army Corps of Engineers,1989.
[3]Rowe P W.The stress-dilatancy relation for static equilibrium of an assembly of particles in contact [C]//Proceedings of Royal Society of London,Series A,1962,269:500-527.
[4]Schofield A N,Wroth C P.Critical State Soil Mechanics [M].London: McGraw-Hill,1968.
[5]Casagrande A.Liquefaction and cyclic deformation of sands,a critical review [C]//Harvard soil mechanics series,No.88.Cambridge: Harvard University,1976.
[6]Poulos S J.The steady state of deformation [J].Journal of Geotechnical Engineering Division,1981,107(5):553-562.
[7]Been K,Jefferies M G.A state parameter for sands [J].Géotechnique,1985,35(2):99-112.
[8]Poulos S J,Castro G,France J W.Liquefaction evaluation procedure [J].Journal of Geotechnical Engineering,1985,111(6):772-792.
[9]Vaid Y P,Chern J C.Cyclic and monotonic undrained response of saturated sands [C]//Advances in the Art of Testing Soils Under Cyclic Loading.Detroit: ASCE National Convention,1985:120-147.
[10]Vaid Y P,Thomas J.Liquefaction and postliquefaction behavior of sand [J].Journal of Geotechnical Engineering,1995,121(2):163-179.
[11]Vaid Y P,Sivathayalan S.Static and cyclic liquefaction potential of Fraser Delta sand in simple shear and triaxial tests [J].Canadian Geotechnical Journal,1996,33(2):281-289.
[12]Riemer M F,Seed R B.Factors affecting apparent position of steady-state line [J].Journal of Geotechnical and Geoenvironmental Engineering,1997,123(3): 281- 288.
[13]Yoshimine M,Ishihara K,Vargas W.Effects of principal stress direction and intermediate principal stress on undrained shear behavior of sand [J].Soils and Foundations,1998,38(3):179-188.
[14]Mooney M A,Viggiani G,Finno R J.Undrained shear band deformation in granular media [J].Journal of Engineering Mechanics.1997,123(6):577-585.
[15]Mooney M A,Finno R J,Viggiani G.A unique critical state for sand [J].Journal of Geotechnical and Geoenvironmental Engineering,1998,124(11):1128- 1138.
[16]Nakata Y,Hyodo M,Murata H,Yasufuku N.Flow deformation of sands subjected to principal stress rotation [J].Soils and Foundations,1998,38(2):115-128.
[17]Tobita Y.Contact tensor in constitutive model for granular materials[C]//Satake M.US-Japan seminar on micromechanics of granular materials,New York: Elsevier,1988:263-270.
[18]Oda M,Nakayama H.Introduction of inherent anisotropy of soils in the yield function [C]// Satake M.Micromechanics of Granular Materials.Amsterdam: Elsevier,1988:81-90.
[19]Oda M,Memat-Nasser S,Konishi J.Stress-induced anisotropy in granular masses [J].Soils and Foundations.1985,23(3):85-97.
[20]Li X S,Dafalias Y F.Dilatancy for cohesionless soils [J].Géotechnique,2000,50(4):449-460.
[21]Li X S.A sand model with state-dependent dilatancy [J].Géotechnique,2002,52(3):173-186.
[22]MING Hai-yan,LI Xiang-song,Y F Dafalias.Numerical study of impact of soil anisotropy on seismic performance of retaining structure[J].Journal of Shenzhen University Science and Engineering,2007,24(3):221-227(in Chinese).
[23]Curray J R.Analysis of two-dimensional orientation data [J].Journal of Geology,1956,64:117-131.
[24]Tobita Y.Fabric tensor [C]//Satake M.Mechanics of granular materials.Rio De Janeiro: TC13,International Society of Soil Mechanics and Foundation Engineering,1989:6-9.

相似文献/References:

[1]苏 栋,李相崧.饱和砂土场地在小震下的响应(英文)[J].深圳大学学报理工版,2007,24(4):339.
 SU Dong and LI Xiang-song.Response of saturated sand ground under small earthquake loading[J].Journal of Shenzhen University Science and Engineering,2007,24(4):339.
[2]苏栋,袁胜强,李锦辉.水平单向及多向载荷下单桩响应的数值研究[J].深圳大学学报理工版,2011,28(No.5(377-470)):389.
 SU Dong,YUAN Sheng-qiang,and LI Jin-hui.Numerical study on response of a single pile under unidirectional and multidirectional horizontal loadings[J].Journal of Shenzhen University Science and Engineering,2011,28(4):389.
[3]蒋红英,宋亮亮,罗双华,等.散粒体的自组织临界性分析[J].深圳大学学报理工版,2015,32(No.1(001-110)):96.[doi:10.3724/SP.J.1249.2015.01096]
 Jiang Hongying,Song Liangliang,Luo Shuanghua,et al.Analysis of self-organized criticality in the granular mixtures[J].Journal of Shenzhen University Science and Engineering,2015,32(4):96.[doi:10.3724/SP.J.1249.2015.01096]
[4]夏良平,崔洪亮.基于金属开口环阵列的太赫兹各向异性超材料[J].深圳大学学报理工版,2019,(No.2(111-220)):152.[doi:10.3724/SP.J.1249.2019.02152]
 XIA Liangping and CUI Hongliang.Terahertz anisotropic metamaterials based on metal slit ring array[J].Journal of Shenzhen University Science and Engineering,2019,(4):152.[doi:10.3724/SP.J.1249.2019.02152]
[5]杨仲轩,李相崧,明海燕.砂土各向异性和不排水剪切特性研究[J].深圳大学学报理工版,2009,26(2):158.
 YANG Zhong-xuan,LI Xiang-song,and MING Hai-yan.Fabric anisotropy and undrained shear behavior of granular soil[J].Journal of Shenzhen University Science and Engineering,2009,26(4):158.

备注/Memo

备注/Memo:
收稿日期:2007-04-12;修回日期:2007-07-22
基金项目:中国国家自然科学基金资助项目(50678103);香港特别行政区研究资助局资助项目(HKUST6002/02E);美国国家自然科学基金资助项目(CMS-0201231);广东省自然科学基金资助项目(7009408);深圳市科技计划资助项目(200625)
作者简介:明海燕(1966-),男(汉族),青海省西宁市人,深圳大学副教授、博士.E-mail: haiyan_ming@hotmail.com
通讯作者:李相崧(1943-),男(汉族),香港科技大学教授、博士生导师.E-mail:xsli@ust.hk
更新日期/Last Update: 2007-11-29