[1]谢盛辉,郑子越,曾燮榕,等.块体非晶合金的剪切带演变与结构研究[J].深圳大学学报理工版,2010,27(4):440-446.
 XIE Sheng-hui,ZHENG Zi-yue,ZENG Xie-rong,et al.The development of shear bands and the structure change in bulk metallic glasses under quasi-static uniaxial compression[J].Journal of Shenzhen University Science and Engineering,2010,27(4):440-446.
点击复制

块体非晶合金的剪切带演变与结构研究()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第27卷
期数:
2010年4期
页码:
440-446
栏目:
材料科学
出版日期:
2010-10-31

文章信息/Info

Title:
The development of shear bands and the structure change in bulk metallic glasses under quasi-static uniaxial compression
文章编号:
1000-2618(2010)04-0440-07
作者:
谢盛辉1郑子越2曾燮榕2胡强1符冬菊1
1)西北工业大学材料学院,西安 710072
2)深圳大学材料学院,深圳市特种功能材料重点实验室,深圳 518060
Author(s):
XIE Sheng-hui1 ZHENG Zi-yue2ZENG Xie-rong2HU Qiang1and FU Dong-ju1
1)School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072,P.R.China
2)College of Materials Science and Engineering, Shenzhen University, Shenzhen Key Laboratory of Special Functional Materials, Shenzhen 518060,P.R.China
关键词:
特种合金块体非晶合金塑性应变剪切带驰豫过剩自由体积纳米孔洞
Keywords:
special alloybulk metallic glassesplastic strainshear bandsrelaxed excess free volumenano-void
分类号:
TG 139
文献标志码:
A
摘要:
研究单轴准静态压缩时Zr基块体非晶合金的剪切带特征,结合热膨胀测试研究剪切引起的非晶合金结构变化.结果表明,初始剪切带彼此独立(εp<2%), 形核和初始扩展方向具有随机性,然后分叉(εp>2%)和相互交割(εp≥6.49%), 次生剪切带逐渐与受力方向成45°,剪切带的次生和扩展受切应力影响较大;变形初期(εp<3%), 剪切变形伴随新生自由体积,对应的驰豫过剩自由体积增多,过冷液相区最大黏度增大;塑性应变进一步增大,剪切带相互交割,对应的驰豫过剩自由体积和黏度急剧减少.
Abstract:
The development of shear bands in Zr-based bulk metallic glasses with different plastic strain after undergoing quasi-static uniaxial compression was investigated.The structural changes in the samples were evaluated through the thermodilatometric analysis.The shear bands are separated and randomly distributed at the initial plastic deformation stage (εp<2%).Then they begin to branch and intersect with each other (εp≥6.49%).The formation and propagation of the secondary shear bands gradually incline to 45° to the loading direction.This indicates that the branching and intersection of the shear bands are much affected by the shear stress.The initial formation of shear bands induces the production of free volume,corresponding to the increase in the relaxed excess free volume (REFV) and the maximum viscosity in the supercooled liquid regime.When the plastic deformation continues,the shear bands intersect with each other,corresponding to the rapid decrease in REFV and the viscosity.The mechanics for the variation of REFV and the viscosity with the plastic strains is discussed.

参考文献/References:

[1]Klement W,Willens R H,Duwez P.固化的Au-Si合金里的非晶结构[J].自然,1960,187(9):869-870.(英文版)
[2]Greer A L.金属玻璃[J].科学,1995,267(3):1947-1953.(英文版)
[3]Inoue A.金属过冷液体的稳定化合块体非晶合金[J].材料学报,2000,48(1):279-306.(英文版)
[4]Wang W H,Dong C,Shek C H.块体金属玻璃[J].材料科学与工程,2004,R44:45-89.(英文版)
[5]Schuh C A,Hufnagel T C,Ramamurty U.非晶态合金的力学行为[J].材料学报,2007,55(12):4067-4109.(英文版)
[6]Georgarakis K,Aljerf M,Li Y,等.金属玻璃的剪切带融化和锯齿流变[J].应用物理快报,2008,93:031907.(英文版)
[7]Zhang W G,Zhang Y,Hao G J,等.原位拉伸时Ti基和Zr基块体非晶合金的剪切带形核和长大比较[J].材料科学与工程A,2009,516(1-2):148-153.(英文版)
[8]Song S X,Bei H,Wadsworth J,等.低应变率压缩载荷下Zr 基块体非晶合金的流变锯齿[J].金属间化合物,2008,16(6):813-818.(英文版)
[9]Song S X,Nieh T G.Zr 基块体非晶合金在非均匀变形时的流变锯齿和剪切带黏度[J].金属间化合物,2009,17(9):762-767.(英文版)
[10]Jiang W H,Atzmon M.压缩和拉伸对非晶态Al90Fe5Gd5合金剪切带结构和纳米晶的影响:一种高分辨透射电镜研究[J].材料学报,2003,51(14):4095-4105.(英文版)
[11]Pampillo C A.玻璃金属里的局域剪切变形[J].冶金汇刊,1972,6(10):915-917.(英文版)
[12]Vianco P T,Li J C M.金属玻璃的剪切带退火[J].材料科学,1987,22(9):3129-3138.(英文版)
[13]Lee L Y,Han K H,Park J M,等.块体非晶在压缩载荷作用下的变形和剪切带演变[J].材料学报,2006,54(19):5271-5279.(英文版)
[14]Li J X,Shan G B,Gao K W,等.块体非晶的剪切带和裂纹形核生长的原位SEM研究[J].材料科学与工程A,2003,354(1-2):337-343.(英文版)
[15]Koba E S,Milman Y V,Rachek A P.塑性变形和高压加工对金属玻璃结构和显微组织的影响[J].冶金材料学报,1994,42(4):1383-1388.(英文版)
[16]Hajlaoui K,Yavari A R,Doisneau B,等.含有纳米颗粒的金属玻璃的剪切局域化和裂纹钝化:TEM原位变形分析[J].材料学报,2006,54(11):1829-1834.(英文版)
[17]Kanungo B P,Glade S C,Asoka K P,等.Zr 基和Cu基块体非晶合金剪切带形成时自由体积变化的表征[J].金属间化合物,2004,12(10-11):1073-1080.(英文版)
[18]Zhao M,Li M.金属玻璃的剪切带偏转角变化的解释[J].应用物理快报,2008,93:241906.(英文版)
[19]Chen Q,Liu L,Chan K C.Zr基块体非晶合金基复合材料在均匀变形时的自由体积变化[J].合金与化合物,2009,467(1-2):208-212.(英文版)
[20] Falk M L.非晶态固体模型的韧性脆性断裂的分子动力学研究[J].物理评论B,1999,60(10):7062-7070.(英文版)
[21]谢盛辉,曾燮榕,钱海霞.Zr基块体非晶合金里驰豫的过剩自由体积与塑性的关系[J].合金与化合物,2009,480(2):L37-L40.(英文版)
[22]Kato H,Chen H S,Inoue A.金属玻璃的热膨胀系数与玻璃转变温度的关系[J].材料汇刊,2008,58(12):1106-1109.(英文版)
[23]Chang Y C,Hung T H,Chen H M,等.块体非晶合金态合金Mg58Cu31Y11的黏性流动行为和热性能[J].金属间化合物,2007,15(10):1303-1308.(英文版)
[24]Deng D,Lu B.Pd77Si16.5Cu6.5玻璃合金冷拉时的密度改变[J].冶金汇刊,1983,17(4):515-518.(英文版)
[25]Hajlaoui K,Benameur T,Vaughan G,等.通过同步辐射实时衍射测量Zr基金属玻璃的热膨胀和压痕引起的自由体积[J].材料汇刊,2004,51(9):843-848.(英文版)
[26]Li J,Wang Z L,Hufnagel T C.定量高分辨电子显微分析表征金属玻璃的纳米缺陷[J].物理评论B,2002,65(14):144201.(英文版)



[1]Klement W,Willens R H,Duwez P.Non-crystalline structure in solidified gold-silicon alloys[J].Nature,1960,187(9):869-870.
[2]Greer A L.Metallic glasses[J].Science,1995,267(3):1947-1953.
[3]Inoue A.Stabilization of metallic supercooled liquid and bulk amorphous alloys[J].Acta Materialia,2000,48(1):279-306.
[4]Wang W H,Dong C,Shek C H.Bulk metallic glasses[J].Materials Science and Engineering,2004,R44:45-89.
[5]Schuh C A,Hufnagel T C,Ramamurty U.Mechanical behavior of amorphous alloys[J].Acta Materialia,2007,55(12):4067-4109.
[6]Georgarakis K,Aljerf M,Li Y,et al.Shear band melting and serrated flow in metallic glasses[J].Applied Physics Letters,2008,93:031907.
[7]Zhang W G,Zhang Y,Hao G J,et al.A comparison of the nucleation and growth of shear bands in Ti and Zr-based bulk metallic glasses by in-situ tensile tests[J].Materials Science and Engineering A,2009,516(1-2):148-153.
[8]Song S X,Bei H,Wadsworth J,et al.Flow serration in a Zr-based bulk metallic glass in compression at low strain rates[J].Intermetallics,2008:16(6):813-818.
[9]Song S X,Nieh T G.Flow serration and shear-band viscosity during inhomogeneous deformation of a Zr-based bulk metallic glass[J].Intermetallics,2009:17(9):762-767.
[10]Jiang W H,Atzmon M.The effect of compression and tension on shear-band structure and nanocrystallization in amorphous Al90Fe5Gd5:a high-resolution transmission electron microscopy study[J].Acta Materialia,2003,51(14):4095-4105.
[11]Pampillo C A.Localized shear deformation in a glassy metal[J].Scripta Metallurgica,1972,6(10):915-917.
[12]Vianco P T,Li J C M.Annealing of shear bands in metallic glasses[J].Journal of Materials Science,1987,22(9):3129-3138.
[13]Lee L Y,Han K H,Park J M,et al.Deformation and evolution of shear bands under compressive loading in bulk metallic glasses[J].Acta Materialia,2006,54(19):5271-5279.
[14]Li J X,Shan G B,Gao K W,et al.In situ SEM study of formation and growth of shear bands and microcracks in bulk metallic glasses[J].Materials Science and Engineering A,2003,354(1-2):337-343.
[15]Koba E S,Milman Y V,Rachek A P.Effect of plastic deformation and high pressure working on the structure and microhardness of metallic glasses[J].Acta Metallurgicaet Materialia,1994,42(4):1383-1388.
[16]Hajlaoui K,Yavari A R,Doisneau B,et al.Shear delocalization and crack blunting of a metallic glass containing nanoparticles:in situ deformation in TEM analysis[J].Scripta Materialia,2006,54(11):1829-1834.
[17]Kanungo B P,Glade S C,Asoka K P,et al.Characterization of free volume changes associated with shear band formation in Zr- and Cu-based bulk metallic glasses[J].Intermetallics,2004,12(10-11):1073-1080.
[18]Zhao M,Li M.Interpreting the change in shear band inclination angle in metallic glasses[J].Applied Physics Letters,2008,93:241906.
[19]Chen Q,Liu L,Chan K C.Change in free volume during the homogeneous flow of Zr-based bulk metallic glass matrix composite[J].Journal of Alloys and Compounds,2009,467(1-2):208-212.
[20]Falk M L.Molecular-dynamics study of ductile and brittle fracture in model noncrystalline solids[J].Physical Review B,1999,60(10):7062-7070.
[21]Xie S H,Zeng X R,Qian H X.Correlations between the relaxed excess free volume and the plasticity in Zr-based bulk metallic glasses[J].Journal of Alloys and Compounds,2009,480(2):L37-L40.
[22]Kato H,Chen H S,Inoue A.Relationship between thermal expansion coefficient and glass transition temperature in metallic glasses[J].Scripta Materialia,2008,58(12):1106-1109.
[23]Chang Y C,Hung T H,Chen H M,et al.Viscous flow behavior and thermal properties of bulk amorphous Mg58-Cu31Y11 alloy[J].Intermetallics,2007,15(10):1303-1308.
[24]Deng D,Lu B.Density change of glassy Pd77Si16.5Cu6.5 alloy during cold drawing[J].Scripta Metallurgica,1983,17(4):515-518.
[25]Hajlaoui K,Benameur T,Vaughan G,et al.Thermal expansion and indentation-induced free volume in Zr-based metallic glasses measured by real-time diffraction using synchrotron radiation[J].Scripta Materialia,2004,51(9):843-848.
[26]Li J,Wang Z L,Hufnagel T C.Characterization of nanometer-scale defects in metallic glasses by quantitative high-resolution transmission electron microscopy[J].Physical Review B,2002,65(14):144201.

备注/Memo

备注/Memo:
收稿日期:2010-03-09;修回日期:2010-06-20
基金项目:深圳市科技计划资助项目(CBX200903090012A);深圳市特种功能材料重点实验室开放基金资助项目(T0907)
作者简介:谢盛辉(1974-),男(汉族),湖南省娄底市人,西北工业大学博士研究生.E-mail:shenghuixie@163.com
通讯作者:曾燮榕(1963-),男(汉族),深圳大学教授、博士生导师.E-mail:zengxr@szu.edu.cn
更新日期/Last Update: 2010-11-09