[1]丰建文,何玲,吴耿,等.统一混沌系统的修改模型及同步设计[J].深圳大学学报理工版,2010,27(1):37-42.
 FENG Jian-wen,HE Ling,WU Geng,et al.Modified model of unified chaotic system and the design of synchronization[J].Journal of Shenzhen University Science and Engineering,2010,27(1):37-42.
点击复制

统一混沌系统的修改模型及同步设计()
分享到:

《深圳大学学报理工版》[ISSN:1000-2618/CN:44-1401/N]

卷:
第27卷
期数:
2010年1期
页码:
37-42
栏目:
光电与信息工程
出版日期:
2010-01-31

文章信息/Info

Title:
Modified model of unified chaotic system and the design of synchronization
文章编号:
1000-2618(2010)01-0037-06
作者:
丰建文何玲吴耿代安定
深圳大学数学与计算科学学院,深圳 518060
Author(s):
FENG Jian-wenHE LingWU Gengand DAI An-ding
College of Mathematics and Computational Science,Shenzhen University,Shenzhen 518060,P.R. China
关键词:
系统学反馈控制自适应控制混沌同步统一混沌系统的修改模型
Keywords:
systematicsfeedback control lawadaptive controlsynchronizationmodified model of unified chaotic system
分类号:
O 415.5
文献标志码:
A
摘要:
通过用分段线性符号函数替换统一混沌系统中部分二次项,得到一个新分段连续的自治系统(称为统一混沌系统修改模型).对该系统性质做定性分析,验证其动力学性态为混沌,运用反馈控制和自适应控制方法,证明两个统一混沌系统的修改模型为同步,数值模拟计算验证了所提同步设计的正确性.
Abstract:
A new simplified three-dimensional piecewise continuous autonomous system (a modified model of unified chaotic system) was introduced by replacing a quadratic nonlinear term in a unified chaotic system with a piecewise linear signum function. The qualitative properties of this modified model were studied to substantiate that it is a chaotic system. Two kinds of nonlinear controllers were designed to theoretically synchronize two uncertain modified models of unified chaotic system. Numerical simulations were presented to show the effectiveness of the methods.

参考文献/References:


[1]Rssler O Z.一种连续混沌的方程[J].物理快报 A,1976,57:397-398.(英文版)
[2]CHEN Guan-rong,UETA T.一个新的混沌吸引子[J].国际分岔与混沌杂志,1999,9(7):1465-1466.(英文版)
[3]Pecora L M,Carroll T L.混沌系统族的同步[J].物理评论快报,1990,64(8):821-824.(英文版)
[4]CHEN Mao-yin,HAN Zheng-zhi.通过非线性反馈来实现Genesio混沌系统的控制和同步[J].混沌、孤立和分形,2003,17(4):709-716.(英文版)
[5]SONG Yan-xing,TIAN Yu-ping,CHEN Guan-rong,等.带有时滞延迟的混沌系统的重复学习控制[J].国际分岔与混沌杂志,2002,12(5):1057-1065.(英文版)
[6]FENG Jian-wen,CHEN Shi-hua,WANG Chang-ping.基于参数识别定超混沌系统的自适应同步[J].混沌、孤立和分形,2008,36(2):329-333.(英文版)
[7]丰建文,吴耿,张维强,等.滑膜控制实现噪声干扰超陈混沌系统同步研究[J].深圳大学学报理工版,2009,26(1):36-41.
[8]Aziz-Alaoui M A.一个新的分段线性混沌系统 [J].Sci快报,2001,3(1):1-7.(英文版)
[9]Elabbasy E M,Agiza H N,El-dessoky M M.改变Chen系统的同步[J]国际分岔与混沌杂志,2004,14(11):3969-3979.(英文版)
[10]YANG Tao.混沌保密通讯系统综述[J].计算认知国际杂志,2004,2(2):81-130.(英文版)
[11]CHUA L O,LIN Gui-nian.Chua’s电路族的典型实现.[J]IEEE电路与系统汇刊,1990,37(7):885-902.(英文版)
[12]Baghious E H,Jarry P.带有分段线性项微分方程的Lorenz吸引子.[J]国际分岔与混沌杂志,1993,3(1):201-210.(英文版)
[13]SUN Hui-jing,CAO Hong-jun.一种改变混沌系统的控制和同步[J].混沌、孤立和分形,2008,37(5):1442-1455.(英文版)
[14]Hassan K K.非线性系统[M].第2版.新泽西:普兰蒂斯·霍尔出版社,1996.(英文版)
[15]Lü Jin-hu,CHEN Guan-rong,CHENG Dai-zhan,等.Lorenz系统和Chen系统的联合[J].国际分岔与混沌杂志,2002,12(2):2917-2926.(英文版)


[1]Rssler O E.An equation for continuous chaos phys[J].Physics Letters A,1976,57(5):397-398.
[2]CHEN Guan-rong,UETA T.Yet another chaotic attractor[J].International Journal of Bifurcation and Chaos,1999,9(7):1465-1466.
[3]Pecora L M,Carroll T L.Synchronization in chaotic systems[J].Physical Review Letters,1990,64(8):821-824.
[4]CHEN Mao-yin,HAN Zheng-zhi.Controlling and synchronizing the chaotic Genesio system via nonlinear feedback control[J].Chaos,Solitons & Fractals,2003,17(4):709-716.
[5]SONG Yan-xing,TIAN Yu-ping,CHEN Guan-rong,et al.Time delayed repetitive learning control for chaotic systems[J].International Journal of Bifurcation and Chaos,2002,12(5):1057-1065.
[6]FENG Jian-wen,CHEN Shi-hua,WANG Chang-ping.Adaptive synchronization of uncertain hyperchaotic systems based on parameter identification[J].Chaos,Solitons & Fractal,2005,26(4):1163-1169.
[7]FENG Jian-wen,WU Geng,ZHANG Wei-qiang, et al.Synchronizing the noise-perturbed hyperchaotic Chen system by sliding mode control[J].Journal of Shenzhen University Science and Engineering,2009,26(1):36-41.(in Chinese)
[8]Aziz-Alaoui M A.Yet a new piecewise-linear chaotic system[J].Science Letters,2001,3(1):1-7.
[9]Elabbasy E M,Agiza H N,El-Dessoky M M.Synchronization of modified Chen system[J]. International Journal of Bifurcation and Chaos,2004,14(11):3969-3979.
[10]YANG Tao.A survey of chaotic secure communication systems[J].International Journal Computational Cognition,2004,2(2):81-130.
[11]CHUA L O,LIN Gui-nian.Cononical realization of Chua’s circuit family[J].IEEE Transactions on Circuits and Systems,1990,37(7):885-902.
[12]Baghious E H,Jarry P.Lorenz attractor from differential equations with piecewise-linear terms [J].International Journal of Bifurcation and Chaos,1993,3(1):201-210.
[13]SUN Hui-jing,CAO Hong-jun.Chaos control and synchronization of a modified chaotic system[J]. Chaos,Solitons & Fractals,2008,37(5):1442-1455.
[14]Hassan K K.Nonlinear System[M].2nd edit.New Jersey:Prentice-Hall Press,1996.
[15]Lü Jin-hu,CHEN Guan-rong,CHENG Dai-zhan,et al.Bridge the gap between the Lorenz and the Chen system[J].International Journal of Bifurcation and Chaos,2002,12(2):2917-2926.

相似文献/References:

[1]谷坤明,谢伟苗,王宇,等.利用混合巡游方法控制时空混沌[J].深圳大学学报理工版,2013,30(No.5(441-550)):475.[doi:10.3724/SP.J.1249.2013.05475]
 Gu Kunming,Xie Weimiao,Wang Yu,et al.Control of spatiotemporal chaos by a hybrid itinerant feedback method[J].Journal of Shenzhen University Science and Engineering,2013,30(1):475.[doi:10.3724/SP.J.1249.2013.05475]
[2]潘运亮,杜军.参数不确定混沌系统的动态面输出调节方法[J].深圳大学学报理工版,2014,31(3):307.[doi:10.3724/SP.J.1249.2014.03307]
 Pan Yunliang and Du Jun.Dynamic surface output regulation method for chaotic systems with adaptive internal model[J].Journal of Shenzhen University Science and Engineering,2014,31(1):307.[doi:10.3724/SP.J.1249.2014.03307]

备注/Memo

备注/Memo:
收稿日期:2009-04-03;修回日期:2009-05-18
基金项目:广东省自然科学基金资助项目( 2008329 );深圳市公共科技资助项目( sy200806270084A )
作者简介:丰建文(1964-),男(汉族),湖北省黄冈市人,深圳大学教授、博士. E-mail:fengjw@szu.edu.cn
更新日期/Last Update: 2010-02-06