|Table of Contents|

Geological feature driven 3D geological modeling(PDF)

Journal of Shenzhen University Science and Engineering[ISSN:1000-2618/CN:44-1401/N]

Issue:
2022 Vol.39 No.4(363-488)
Page:
417-423
Research Field:
Architecture & Civil Engineering

Info

Title:
Geological feature driven 3D geological modeling
Author(s):
XU Guo1 WANG Changhai2 and ZHOU Xiaoqin1
1) Nanning Exploration & Survey Design Institute Group Co. Ltd., Nanning 530028, Guangxi Zhuang Autonomous Region, P. R. China
2) Guangxi Communications Design Group Co. Ltd., Nanning 530029, Guangxi Zhuang Autonomous Region, P. R. China
3) School of Civil and Architecture Engineering, Guangxi Vocational and Technical College of Communications, Nanning 530023, Guangxi Zhuang Autonomous Region, P. R. China
Keywords:
geological engineering 3D geology modeling geometric model attribute model topological relationship geological feature driven
PACS:
U495
DOI:
10.3724/SP.J.1249.2022.04417
Abstract:
In 3D geological modeling, it is generally difficult to effectively integrate geometric data and attribute data due to their different characteristics. In order to realize the integration of geological features, we propose a 3D geological modeling technology driven by geological features. We construct the geometric structure model based on 3D spatial data. By solving the geometric mapping and topological correlation of geological features, we establish the topological relationship between attribute data of various geological features and graphic elements of geometric model, and realize the effective constraints of attribute data and geometric data . Finally, we obtain a 3D geological model driven by geological features satisfying the unique topological relationship. The experimental verification is carried out through the actual engineering data located in the slope zone between Yunnan Guizhou Plateau and Guangxi basin. This technology solves the effective fusion of geometric data and attribute data, provides a comprehensive 3D model for geological comprehensive analysis and engineering application.

References:

[1] HOULDING S W. 3D Geo-science modeling: gomputer techniques for geological characteriz-ation [M]. London: Springer-Verlag, 1993: 1-2.
[2] 周启鸣,刘学军. 数字地形分析[M]. 北京:科学出版社,2006:75-77.
ZHOU Qiming, LIU Xuejun. Digital terrain analysis [M]. Beijing: Science Press, 2006: 75-77.(in Chinese)
[3] 张康聪. 地理信息系统导论[M]. 北京:清华大学出版社,2009:40-43.
ZHANG Kangcong. Introduction to geographic information system [M]. Beijing: Tsinghua University Press, 2009: 40-43.(in Chinese)
[4] DRAGUT L, BLASCHKE T. Automated classification of landform elements using object-based image analysis [J]. Geomorphology, 2006, 81(3/4): 330-344.
[5] 李明超,白硕,孔锐,等. 工程尺度地质结构三维参数化建模方法[J].岩石力学与工程学报,2020,39(增刊1):2848-2859.
LI Mingchao, BAI Shuo, KONG Rui, et al. 3D parametric modeling method of engineering-scale geological structures [J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(Suppl.1): 2848-2859.(in Chinese)
[6] 王长海,周晓琴,许国,等. 基于离散光滑理论的高精度三维模型构建方法[J]. 武汉大学学报工学版,2014,47(5):604-609.
WANG Changhai, ZHOU Xiaoqin, XU Guo, et al. A high-precision 3D modeling method based on discrete smooth construction theory [J]. Journal of Wuhan University Engineering, 2014, 47(5): 604-609.(in Chinese)
[7] 王长海,陈碧宇. 基于离散光滑插值的三维地质体构造网格模型[J]. 深圳大学学报理工版,2014,31(6):600-607.
WANG Changhai, CHEN Biyu. 3D geological grid model based on discrete smooth interpolation [J]. Journal of Shenzhen University Science and Engineering, 2014, 31(6): 600-607.(in Chinese)
[8] 王长海,黄维强,李辉,等. 岩滩水电站三维地质建模技术研究[J]. 水力发电,2010,36(12):15-18.
WANG Changhai, HUANG Weiqiang, LI Hui, et al. Study on 3D geological modeling of Yantan Hydropower Station [J]. Water Power, 2010, 36(12): 15-18.(in Chinese)
[9] 王长海,周晓琴,陈碧宇. 以地理信息为载体的智慧城市设计[J]. 测绘科学,2014,39(8):58-61.
WANG Changhai, ZHOU Xiaoqin, CHEN Biyu. Intelligent urban design based on geographic information [J]. Science of Surveying and Mapping, 2014, 39(8): 58-61.(in Chinese)
[10] 许国,王长海. 万家口水电站复杂地质体三维模型及其数值模型构建[J]. 武汉大学学报工学版,2014,47(4):469-474.
XU Guo, WANG Changhai. Complex geological object visualization and numerical modeling for Wanjiakou hydropower station [J]. Journal of Wuhan University Engineering, 2014, 47(4): 469-474.(in Chinese)
[11] 许国,王长海.离散平滑插值模拟方法在地下硐室群工程中的应用[J]. 工程地质学报,2013(2):216-221.
XU Guo, WANG Changhai. Application of discrete smooth interpolation to underground construction [J]. Journal of Engineering Geology, 2013(2): 216-221.(in Chinese)
[12] 周晓琴,王长海,陈碧宇. 基于DSI技术的高精度三维地质曲面构建方法[J]. 深圳大学学报理工版,2014,31(4):395-401.
ZHOU Xiaoqin, WANG Changhai, CHEN Biyu. A high-precision 3D geological surface modeling method based on discrete smooth interpolation [J]. Journal of Shenzhen University Science and Engineering, 2014, 31(4): 395-401.(in Chinese)
[13] 李健,刘培荣,梁传信. 多源数据融合的规则体元分裂三维地质建模方法[J].岩土力学,2021,42(4):1170-1177.
LI Jian, LIU Peirong, LIANG Zhuanxin, et al. Three-dimensional geological modeling method of regular voxel splitting based on multi-source data fusion [J]. Rock and Soil Mechanics, 2021, 42(4): 1170-1177.(in Chinese)
[14] 曾鹏,秦扬,陈洪,等. 基于Kriging插值算法的地质体BIM建模技术[J]. 人民长江,2021(增刊2):99-104.
ZENG Peng, QIN Yang, CHEN Hong, et al. BIM-based geological model construction using Kriging interpolation algorithm [J]. Yangtze River, 2021(Suppl. 2): 99-104.(in Chinese)
[15] 王金鑫,秦子龙,曹泽宁,等. 基于八叉树的修正克里金空间插值算法[J]. 郑州大学学报工学版,2021,42(6):21-27.
WANG Jinxin, QIN Zilong, CAO Zening, et al. Modified Kriging spatial interpolation algorithm based on octree mechanism [J]. Journal of Zhengzhou University Engineering Science, 2021, 42(6): 21-27.(in Chinese)
[16] 吴志春,郭福生,林子瑜,等. 三维地质建模中的多源数据融合技术与方法[J]. 吉林大学学报地球科学版,2016,46(6):1895-1913.
WU Zhichun, GUO Fusheng, LIN Ziyu, et al. Technology and method of multi-data merging in 3D geological modeling [J]. Journal of Jilin University Earth Science, 2016, 46(6): 1895-1913.(in Chinese)

Memo

Memo:
-