|Table of Contents|

1.7 μm self-synchronized picosecond pulsed random Raman fiber laser(PDF)

Journal of Shenzhen University Science and Engineering[ISSN:1000-2618/CN:44-1401/N]

2022 Vol.39 No.4(363-488)
Research Field:
Optoelectronics Engineering


1.7 μm self-synchronized picosecond pulsed random Raman fiber laser
ZHU Yihuai1 2 SHEN Pengsheng1 ZHENG Shukai1 YU Lingpeng1 LUO Xing1 WANG Jinzhang1 YAN Peiguang1 L? Qitao3 DONG Fanlong1 2
GUO Chunyu1
and RUAN Shuangchen1 2
1) College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Laser Engineering, Shenzhen University, Shenzhen 518060, Guangdong Province, P. R. China
2) Key Laboratory of Advanced Optical Precision Manufacturing Technology of Guangdong Higher Education Institutes, Shenzhen Technology University, Shenzhen 518118, Guangdong Province, P. R. China
3) Han’s Laser Technology Industry Group Co. Ltd., Shenzhen 518057, Guangdong Province, P. R. China
optoelectronics and laser technology nonlinear optics random fiber lasers Raman fiber lasers synchronous pumping pulse
Aiming at the structural complexity of the current 1.7 μm band short pulse lasers, we propose and implement a self-synchronized picosecond pulsed random Raman fiber laser. The half-open Raman cavity based on random distributed feedback is pumped by a 1 578 nm pulsed fiber laser to achieve a picosecond pulse output with a central wavelength of 1 695 nm and an average power of 224 mW. The composite cavity formed by distributed Rayleigh scattering automatically satisfies the synchronous pumping condition without the need for precise matching of cavity length or complex feedback control in the system. By inserting a wavelength division multiplexer in the cavity, the random sub-cavity noise is suppressed and the stability of the output pulse is improved. To the best of our knowledge, this is the first realization of a random pulse fiber laser operating at 1.7 μm, which can be widely used in bioimaging and material processing.


[1] ZIPFEL W R, WILLIAMS R M, WEBB W W. Nonlinear magic: multiphoton microscopy in the biosciences [J]. Nature Biotechnology, 2003, 21(11): 1369-1377.
[2] MINGAREEV I, WEIRAUCH F, OLOWINSKY A, et al. Welding of polymers using a 2 μm thulium fiber laser [J]. Optics and Laser Technology, 2012, 44(7): 2095-2099.
[3] SHI L, SORDILLO L A, RODR?GUEZ-CONTRERAS A, et al. Transmission in near-infrared optical windows for deep brain imaging [J]. Journal of Biophotonics, 2016, 9(1/2): 38-43.
[4] WU M, JANSEN K, VAN DER STEEN A F W, et al. Specific imaging of atherosclerotic plaque lipids with two-wavelength intravascular photoacoustics [J]. Biomedical Optics Express, 2015, 6(9): 3276-3286.
[5] NORONEN T, FIRSTOV S, DIANOV E, et al. 1700 nm dispersion managed mode-locked bismuth fiber laser [J]. Scientific Reports, 2016, 6: 3-8.
[6] THIPPARAPU N K, WANG Y, WANG S, et al. Bi-doped fiber amplifiers and lasers (invited) [J]. Optical Materials Express, 2019, 9(6): 2446-2465.
[7] KHEGAI A, MELKUMOV M, RIUMKIN K, et al. NALM-based bismuth-doped fiber laser at 1.7 μm [J]. Optics Letters, 2018, 43(5): 1127-1130.
[8] LI Can, SHI Jiawei, GONG Xiaojing, et al. 1.7 μm wavelength tunable gain-switched fiber laser and its application to spectroscopic photoacoustic imaging [J]. Optics Letters, 2018, 43(23): 5849-5852.
[9] LI Can, SHI Jiawei, WANG Xiatian, et al. High-energy all-fiber gain-switched thulium-doped fiber laser for volumetric photoacoustic imaging of lipids [J]. Photonics Research, 2020, 8(2): 160-164.
[10] CHEN Jixiang, LI Xiangyue, LI Tijian, et al. 1.7 μm dissipative soliton Tm-doped fiber laser [J]. Photonics Research, 2021, 9(5): 873-878.
[11] NORONEN T, OKHOTNIKOV O, GUMENYUK R. Electronically tunable thulium-holmium mode-locked fiber laser for the 1700-1800 nm wavelength band [J]. Optics Express, 2016, 24(13): 14703-14708.
[12] CHEN Jixiang, ZHAN Zeyu, LI Can, et al. 1.7 ?m Tm-fiber chirped pulse amplification system with dissipative soliton seed laser [J]. Optics Letters, 2021, 46(23): 5922-5925.
[13] CHESTNUT D A, TAYLOR J R. Soliton self-frequency shift in highly nonlinear fiber with extension by external Raman pumping [J]. Optics Letters, 2003, 28(24): 2512-2514.
[14] NICHOLSON J W, DESANTOLO A, KAENDERS W, et al. Self-frequency-shifted solitons in a polarization-maintaining, very-large-mode area, Er-doped fiber amplifier [J]. Optics Express, 2016, 24(20): 23396-23402.
[15] ACH A Z, ICHOLSON J W N, ZACH A, et al. All-fiber widely tunable ultrafast laser source for multimodal imaging in nonlinear microscopy [J]. Optics Letters, 2019, 44(21): 5218-5221.
[16] BECHEKER R, TANG M, HANZARD P H, et al. High-energy dissipative soliton-driven fiber optical parametric oscillator emitting at 1.7 μm [J]. Laser Physics Letters, 2018, 15(11): 115103.
[17] QIN Yukun, BATJARGAL O, CROMEY B, et al. All-fiber high-power 1700 nm femtosecond laser based on optical parametric chirped-pulse amplification [J]. Optics Express, 2020, 28(2): 2317-2325.
[18] CHUNG H, LIU Wei, CAO Qian, et al. Er-fiber laser enabled, energy scalable femtosecond source tunable from 1.3 to 1.7 ?m [J]. Optics Express, 2017, 25(14): 2060-2063.
[19] TURITSYN S K, BABIN S A, EL-TAHER A E, et al. Random distributed feedback fibre laser [J]. Nature Photonics, 2010, 4(4): 231-235.
[20] FOTIADI A A. Random lasers: an incoherent fibre laser [J]. Nature Photonics, 2010, 4(4): 204-205.
[21] LIU Jun, WU Jiadong, CHEN Hualong, et al. Short-pulsed Raman fiber laser and its dynamics [J]. Science China: Physics, Mechanics and Astronomy, 2021, 64(1): 1-21.
[22] KOBTSEV S M, IVANENKO A, KOKHANOVSKY A, et al. Fibre Raman laser generated clusters of femtosecond pulses at 1270 nm [C]// Proceedings of the International Conference on LASE. San Francisco, USA: SPIE, 2019, 10897: 428-433.
[23] PAN Weiwei, ZHANG Lei, JIANG Huawei, et al. Ultrafast Raman fiber laser with random distributed feedback [J]. Laser and Photonics Reviews, 2018, 12(4): 1-6.
[24] REDDING B, CHOMA M A, CAO H. Speckle-free laser imaging using random laser illumination [J]. Nature Photonics, 2012, 6(6): 355-359.