[1] ZIPFEL W R, WILLIAMS R M, WEBB W W. Nonlinear magic: multiphoton microscopy in the biosciences [J]. Nature Biotechnology, 2003, 21(11): 1369-1377.
[2] MINGAREEV I, WEIRAUCH F, OLOWINSKY A, et al. Welding of polymers using a 2 μm thulium fiber laser [J]. Optics and Laser Technology, 2012, 44(7): 2095-2099.
[3] SHI L, SORDILLO L A, RODR?GUEZ-CONTRERAS A, et al. Transmission in near-infrared optical windows for deep brain imaging [J]. Journal of Biophotonics, 2016, 9(1/2): 38-43.
[4] WU M, JANSEN K, VAN DER STEEN A F W, et al. Specific imaging of atherosclerotic plaque lipids with two-wavelength intravascular photoacoustics [J]. Biomedical Optics Express, 2015, 6(9): 3276-3286.
[5] NORONEN T, FIRSTOV S, DIANOV E, et al. 1700 nm dispersion managed mode-locked bismuth fiber laser [J]. Scientific Reports, 2016, 6: 3-8.
[6] THIPPARAPU N K, WANG Y, WANG S, et al. Bi-doped fiber amplifiers and lasers (invited) [J]. Optical Materials Express, 2019, 9(6): 2446-2465.
[7] KHEGAI A, MELKUMOV M, RIUMKIN K, et al. NALM-based bismuth-doped fiber laser at 1.7 μm [J]. Optics Letters, 2018, 43(5): 1127-1130.
[8] LI Can, SHI Jiawei, GONG Xiaojing, et al. 1.7 μm wavelength tunable gain-switched fiber laser and its application to spectroscopic photoacoustic imaging [J]. Optics Letters, 2018, 43(23): 5849-5852.
[9] LI Can, SHI Jiawei, WANG Xiatian, et al. High-energy all-fiber gain-switched thulium-doped fiber laser for volumetric photoacoustic imaging of lipids [J]. Photonics Research, 2020, 8(2): 160-164.
[10] CHEN Jixiang, LI Xiangyue, LI Tijian, et al. 1.7 μm dissipative soliton Tm-doped fiber laser [J]. Photonics Research, 2021, 9(5): 873-878.
[11] NORONEN T, OKHOTNIKOV O, GUMENYUK R. Electronically tunable thulium-holmium mode-locked fiber laser for the 1700-1800 nm wavelength band [J]. Optics Express, 2016, 24(13): 14703-14708.
[12] CHEN Jixiang, ZHAN Zeyu, LI Can, et al. 1.7 ?m Tm-fiber chirped pulse amplification system with dissipative soliton seed laser [J]. Optics Letters, 2021, 46(23): 5922-5925.
[13] CHESTNUT D A, TAYLOR J R. Soliton self-frequency shift in highly nonlinear fiber with extension by external Raman pumping [J]. Optics Letters, 2003, 28(24): 2512-2514.
[14] NICHOLSON J W, DESANTOLO A, KAENDERS W, et al. Self-frequency-shifted solitons in a polarization-maintaining, very-large-mode area, Er-doped fiber amplifier [J]. Optics Express, 2016, 24(20): 23396-23402.
[15] ACH A Z, ICHOLSON J W N, ZACH A, et al. All-fiber widely tunable ultrafast laser source for multimodal imaging in nonlinear microscopy [J]. Optics Letters, 2019, 44(21): 5218-5221.
[16] BECHEKER R, TANG M, HANZARD P H, et al. High-energy dissipative soliton-driven fiber optical parametric oscillator emitting at 1.7 μm [J]. Laser Physics Letters, 2018, 15(11): 115103.
[17] QIN Yukun, BATJARGAL O, CROMEY B, et al. All-fiber high-power 1700 nm femtosecond laser based on optical parametric chirped-pulse amplification [J]. Optics Express, 2020, 28(2): 2317-2325.
[18] CHUNG H, LIU Wei, CAO Qian, et al. Er-fiber laser enabled, energy scalable femtosecond source tunable from 1.3 to 1.7 ?m [J]. Optics Express, 2017, 25(14): 2060-2063.
[19] TURITSYN S K, BABIN S A, EL-TAHER A E, et al. Random distributed feedback fibre laser [J]. Nature Photonics, 2010, 4(4): 231-235.
[20] FOTIADI A A. Random lasers: an incoherent fibre laser [J]. Nature Photonics, 2010, 4(4): 204-205.
[21] LIU Jun, WU Jiadong, CHEN Hualong, et al. Short-pulsed Raman fiber laser and its dynamics [J]. Science China: Physics, Mechanics and Astronomy, 2021, 64(1): 1-21.
[22] KOBTSEV S M, IVANENKO A, KOKHANOVSKY A, et al. Fibre Raman laser generated clusters of femtosecond pulses at 1270 nm [C]// Proceedings of the International Conference on LASE. San Francisco, USA: SPIE, 2019, 10897: 428-433.
[23] PAN Weiwei, ZHANG Lei, JIANG Huawei, et al. Ultrafast Raman fiber laser with random distributed feedback [J]. Laser and Photonics Reviews, 2018, 12(4): 1-6.
[24] REDDING B, CHOMA M A, CAO H. Speckle-free laser imaging using random laser illumination [J]. Nature Photonics, 2012, 6(6): 355-359.