[1] MOLINARO R, DAUSCHER C. Complications resulting from uncontrolled diabetes [J]. MLO: Medical Laboratory Observer, 2017, 49(2): 20-22.
[2] MONACO C M F, PERRY C G R, HAWKE T J. Diabetic myopathy: current molecular understanding of this novel neuromuscular disorder [J]. Current Opinion in Neurology, 2017, 30(5): 545-552.
[3] JAMES H A, O’NEILL B T, NAIR K S. Insulin regulation of proteostasis and clinical implications [J]. Cell Metabolism, 2017, 26(2): 310-323.
[4] O’NEILL B T, LEE K Y, KLAUS K, et al. Insulin and IGF-1 receptors regulate FoxO-mediated signaling in muscle proteostasis [J]. The Journal of Clinical Investigation, 2016, 126(9): 3433-3446.
[5] MORI H, KURODA A, ARAKI M, et al. Advanced glycation end-products are a risk for muscle weakness in Japanese patients with type 1 diabetes [J]. Journal of Diabetes Investigation, 2017, 8(3): 377-382.
[6] BONALDO P, SANDRI M. Cellular and molecular mechanisms of muscle atrophy [J]. Disease Models & Mechanisms, 2013, 6(1): 25-39.
[7] ZHANG Heda, JIANG Linhong, SUN Dawei, et al. Circ-RNA: a novel type of biomarker for cancer [J]. Breast Cancer, 2018, 25(1): 1-7.
[8] KUMAR L, SHAMSUZZAMA, HAQUE R, et al. Circular RNAs: the emerging class of non-coding RNAs and their potential role in human neurodegenerative diseases [J]. Molecular Neurobiology, 2017, 54(9): 7224-7234.
[9] LI Lianju, HUANG Qing, PAN Haifeng, et al. Circular RNAs and systemic lupus erythematosus [J]. Experimental Cell Research, 2016, 346(2): 248-254.
[10] VAUSORT M, SALGADO-SOMOZA A, ZHANG Lu, et al. Myocardial infarction-associated circular RNA predicting left ventricular dysfunction [J]. Journal of the American College of Cardiology, 2016, 68(11): 1247-1248.
[11] SALZMAN, J. Circular RNA expression: its potential regulation and function [J]. Trends in Genetics, 2016, 32(5): 309-316.
[12] LI HENG, DURBIN R. Fast and accurate short read alignment with Burrows-Wheeler transform [J]. Bioinformatics, 2009, 25(14): 1754-1760.
[13] MEMCZAK S, JENS M, ELEFSINIOTI A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency [J]. Nature, 2013, 495(7441): 333-338.
[14] GAO Yuan, ZHANG Jinyang, ZHAO Fangqing. Circular RNA identification based on multiple seed matching [J]. Briefings in Bioinformatics, 2018, 19(5): 803-810.
[15] LI Yan, ZHENG Qiupeng, BAO Chunyang, et al. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis [J]. Cell Research, 2015, 25(8): 981-984.
[16] RYU Y, LEE D, JUNG S H, et al. Sabinene prevents skeletal muscle atrophy by inhibiting the MAPK-MuRF-1 pathway in rats [J]. International Journal of Molecular Sciences, 2019, 20(19): 1-14.
[17] O’NEILL B T, BHARDWAJ G, PENNIMAN C M, et al. FoxO transcription factors are critical regulators of diabetes-related muscle atrophy [J]. Diabetes, 2019, 68(3): 556-570.
[18] SEXTON W L, POOLE D C, MATHIEU-COSTELLO O. Microcirculatory structure-function relationships in skeletal muscle of diabetic rats [J]. The American Journal of Physiology, 1994, 266(4): H1502-H1511.
[19] ARAGNO M, MASTROCOLA R, CATALANO M G, et al. Oxidative stress impairs skeletal muscle repair in diabetic rats [J]. Diabetes, 2004, 53(4): 1082-1088.
[20] KRAUSE M P, AL-SAJEE D, D’SOUZA D M, et al. Impaired macrophage and satellite cell infiltration occurs in a muscle-specific fashion following injury in diabetic skeletal muscle [J]. PLoS One, 2013, 8(8): 1-13.
[21] FUJIMAKI S, WAKABAYASHI T, ASASHIMA M, et al. Treadmill running induces satellite cell activation in diabetic mice [J]. Biochemistry and Biophysics Reports, 2016, 8(1): 6-13.
[22] LEGNINI I, DI TIMOTEO G, ROSSI F, et al. Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis [J]. Molecular Cell, 2017, 66(1): 22-37.
[23] LI Hui, WEI Xuefeng, YANG Jiameng, et al. CircFGFR4 promotes differentiation of myoblasts via binding miR-107 to relieve its inhibition of Wnt3a [J]. Molecular Therapy, 2018, 11(1): 272-283.
[24] SUZUKI H, AOKI Y, KAMEYAMA T, et al. Endogenous multiple exon skipping and back-splicing at the DMD mutation hotspot [J]. International Journal of Molecular Sciences, 2016, 17(10): 1-16
[25] ROSSI F, LEGNINI I, MEGIORNI F, et al. Circ-ZNF609 regulates G1-S progression in rhabdomyosarcoma [J]. Oncogene, 2019, 38(20): 3843-3854.
[26] SCHIAFFINO S, DYAR K A, CICILIOT S, et al. Mechanisms regulating skeletal muscle growth and atrophy [J]. The FEBS Journal, 2013, 280(17): 4294-4314.
[27] SACHECK J M, HYATT J P, RAFFAELLO A, et al. Rapid disuse and denervation atrophy involve transcriptional changes similar to those of muscle wasting during systemic diseases [J]. FASEB Journal, 2007, 21(1): 140-155.
[28] SANDRI M. Signaling in muscle atrophy and hypertrophy [J]. Physiology, 2008, 23(1): 160-170.
[29] CENTNER T, YANO J, KIMURA E, et al. Identification of muscle specific ring finger proteins as potential regulators of the titin kinase domain [J]. Journal of Molecular Biology, 2001, 306(4): 717-726.
[30] BODINE S C, LATRES E, BAUMHUETER S, et al. Identification of ubiquitin ligases required for skeletal muscle atrophy [J]. Science, 2001, 294(5547): 1704-1708.
[31] TAILLANDIER D, POLGE C. Skeletal muscle atrogenes: from rodent models to human pathologies [J]. Biochimie, 2019, 166(1): 251-269.