不同MgO掺杂比对MgxZn1-xO靶材性能的影响

1)深圳大学材料学院,深圳市特种功能材料重点实验室,深圳陶瓷制备先进技术工程实验室,深圳 518060; 2)株洲硬质合金集团有限公司,硬质合金国家重点实验室,湖南株洲412000

材料加工; 粉末冶金; 氧化锌; 氧锌镁; 陶瓷靶材; 烧结; 掺杂比; 力学性能

Effect of MgO doping ratio on the properties of MgxZn1-xO targets
Gao Qingqing1, Zhang Zhongjian2, Pi Chenbing1, Cai Xuexian1, Shang Fuliang1, Zhu Deliang1, and Yang Haitao1

Gao Qingqing1, Zhang Zhongjian2, Pi Chenbing1, Cai Xuexian1, Shang Fuliang1, Zhu Deliang1, and Yang Haitao11)College of Materials Science and Engineering, Key Laboratory of Functional Materials of Shenzhen, Shenzhen Engineering Laboratory of Advanced Technology for Ceramics, Shenzhen University, Shenzhen 518060, P.R.China2)Zhuzhou Cemented Carbide Group Co. Ltd, State Key Lab of Cemented Carbide,Zhuzhou 412000, Hunan Province, P.R.China

materials processing; powder metallurgy; ZnO; MgxZn1-xO; ceramic target; sintering; doping ratio; mechanical property

DOI: 10.3724/SP.J.1249.2015.01082

备注

用传统常压固相烧结法,制备掺杂氧化镁的氧化锌陶瓷靶材,研究不同MgO含量及烧结温度对MgxZn1-xO陶瓷靶材的微观结构、力学性能、致密度和导电性能的影响.通过X射线衍射仪(X-ray diffraction,XRD)测定靶材相结构,扫描式电子显微镜(scanning electron microscope,SEM)观察靶材的断面形貌,万能实验机测量靶材的抗弯强度,维氏显微硬度仪测量靶材的维氏硬度,阿基米德排水法测量靶材密度,四探针法测量靶材导电性能,对MgxZn1-xO靶材的性能进行了表征,分析了MgxZn1-xO陶瓷靶材的烧结机理. 结果表明,MgxZn1-xO靶材的最佳烧结温度随着MgO含量的增加有所提高. MgO的掺杂比为x=0.12时,靶材的最佳烧结温度是1 450 ℃; 掺杂比为x=0.20时,靶材的最佳烧结温度约为1 500 ℃. 相同烧结温度下,随着MgO掺杂比的增加,靶材的致密性增大; 靶材抗弯强度先升后降,掺杂比为x=0.12时达到最大值,为94.56 MPa. 靶材硬度随着Mg含量的增加渐增,在1 450 ℃烧结,掺杂比为0时维氏硬度为152.000 N/mm2,掺杂比为x=0.40时维氏硬度为364.045 N/mm2.靶材的导电性随着MgO掺杂比的增加呈渐减趋势,掺杂比为0时,方块电阻为819.36 Ω; 掺杂比为x=0.40时,方块电阻增至30.00 MΩ.

MgxZn1-xO ceramic targets were prepared by using traditional solid-phase sintering method, and the effects of different MgO doping ratios and sintering temperatures on their microstructure, mechanical properties, density and electrical properties were studied. The MgxZn1-xO targets performance were characterized through specific analyses, including phase structure analysis by X-ray diffraction(XRD), fracture surface observation by scanning electron microscope(SEM), bending strength measurement by universal-testing machine, Vickers hardness measurement by micro Vickers tester, density measurement by Archimedes principle, and conductivity measurement by the four-probe method. Also, a preliminary understanding of the sintering mechanism of MgxZn1-xO targets was better understood on the basis of the characterization. The results show that the best sintering temperature increases with the increase of the MgO content x in MgxZn1-xO. The optimal sintering temperature is 1 450 ℃, at the doping ratio x=0.12, and the optimal sintering temperature is 1 500 ℃, at the doping ratio x=0.20. At the same sintering temperature, the density increases with the increase of MgO content, while the bending strength first increases and then decreases with the maximum bending strength being 94.56 MPa at the doping ratio x=0.12. The hardness always increases with the increase of MgO content: Vickers hardness reaches 152.000 N/mm2 without doping, and the hardness increases to 364.045 N/mm2 at the doping ratio x=0.40. The sheet conductivity gradually decreases with the increase of MgO doping ratio. The sheet resistance is 819.36 Ω when doping ratio is 0 and it increases to 30.00 MΩ when doping ratio x=0.40.

·